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ABSTRACT
Fully resolved direct numerical simulations, performed

with a high-order spectral-element method, are used to
study coherent structures in turbulent pipe flow at friction
Reynolds numbers Reτ = 180 and 550 (El Khoury et al.,
2013). The database was analysed using spectral proper
orthogonal decomposition (SPOD) so as to identify domi-
nant coherent structures, most of which are of streaky shape.
As a reduced-order model for such structures, the linearised
flow response to harmonic forcing was computed, and the
analysed singular modes of the resolvent operator were
analysed. For turbulent flows, this approach amounts to
considering the non-linear terms in the Navier–Stokes sys-
tem as an unknown forcing, treated convenienty as external.
Resolvent analysis then allows an identification of the op-
timal forcing and most amplified flow response; the latter
may be related to observed relevant structures obtained by
SPOD, especially if the gain between forcing and response
is much larger than what is found for suboptimal forcings or
if the non-linear forcing is white noise. Results from SPOD
and resolvent analysis were extracted for several combina-
tions of frequencies, streamwise and azimuthal wavenum-
bers. For both Reynolds numbers, good agreement between
SPOD and resolvent modes was observed for parameter
combinations where the lift-up mechanism is present: op-
timal forcing from resolvent analysis represents streamwise
vortices and the associated response are streaky structures.

INTRODUCTION
In turbulent wall-bounded flows, such as pipes, chan-

nels and boundary layers, near-wall streaks are the most

typically observed coherent structures, they are extremely
relevant near-wall structures in wall-bounded turbulence
(Kline et al., 1967; Gupta et al., 1971). Such streaky struc-
tures are regions of alternating low and high momentum lo-
cated in the viscous and buffer layers with a characteristic
spanwise spacing of 100ν/uτ , where uτ is the friction ve-
locity and ν is the kinematic viscosity of the fluid (Maru-
sic et al., 2017). For higher wall-normal positions, larger
structures are observed, with similar streaky shape (Maru-
sic et al., 2017). The study of a turbulent flow along the
surface of a solid body and its interaction with the wall is
one of the most fundamental problems in fluid mechanics.
Thus, the pursuit for more effective methods to model and
characterize near-wall coherent structures is a very relevant
problem.

For that matter, the use of statistical methods in flow
databases can be convenient to identify coherent structures
present in the flow. Certain turbulence statistics, taken in
frequency and wavenumber domain whenever possible, can
be optimally represented using a spectral proper orthogo-
nal decomposition (SPOD), this method involves decompo-
sition of the cross-spectral density tensor (CSD) and leads
to modes oscillating at a specific frequency (Towne et al.,
2018). The leading SPOD modes show the most likely spa-
tial structures that arise in turbulent-flow realisations, sorted
in terms of their contribution to the overall power; SPOD is
thus a useful method to extract energetic coherent structures
in turbulence.

Recent works have explored the connection of SPOD
modes with the flow responses to stochastic forcing (Abreu
et al., 2017, see for instance); note that such responses are
obtained using the linearised resolvent operator, consider-
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ing the mean field as base flow for linearisation. In this con-
text, the non-linear fluctuation terms are treated as an exter-
nal forcing (McKeon & Sharma, 2010; Gómez et al., 2014).
These linearised responses can often be related to results of
hydrodynamic stability theory, with modes corresponding
to linear stability eigenfunctions or to non-modal mecha-
nisms such as lift-up (Jovanovic & Bamieh, 2005), but in
recent years resolvent analysis has been used to study co-
herent structures in turbulent flows (see the review of (McK-
eon, 2017) and references therein). An important result is
that if the forcing can be modeled as spatial white noise, a
direct correspondence between SPOD and resolvent modes
is expected (Towne et al., 2018). Moreover, for a flow with
a dominant optimal forcing, leading to a gain much larger
than that of suboptimal ones, the CSD will often be domi-
nated by the leading response obtained in resolvent analysis
(Cavalieri et al., 2019).

Thus a combined analysis of the flow, with SPOD serv-
ing to decompose turbulent fluctuations and resolvent anal-
ysis as a theoretical framework, enables a reduced-order
model of the dynamically-relevant flow features. A num-
ber of previous studies works have dealt with POD (without
frequency decomposition) (Hellström et al., 2016) and re-
solvent analysis (McKeon & Sharma, 2010) for turbulent
pipe flow, but the ability of the latter to model SPOD modes
has not been addressed by a thorough comparison involving
the range of relevant wavenumbers and frequencies. This is
pursued here for turbulent pipe flow, a canonical configura-
tion for the study of wall-bounded turbulence.

In the present study, we apply SPOD to turbulent
pipe flow, following the approach outlined by Towne et al.
(2018), with the standard incompressible turbulent kinetic
energy norm. We take a Fourier decomposition of veloc-
ity fields in all homogeneous directions: streamwise, az-
imuthal directions and time, so then we obtain the field for
specifics wavenumbers, kx and kz, and frequency ω , i.e.
q̂(kx,r,kz,ω), where hats denote Fourier-transformed quan-
tities; we then apply the SPOD to this transformed field,
which is equivalent to solving the integral equation:

∫
C(r,r′,ω)Ψ(r′,ω)dr′ = λ (ω)Ψ(r,ω), (1)

where Ψ are the basis functions, also called SPOD modes,
λ is the corresponding eigenvalue and C is the two-point
cross-spectral density. C is a Hermitian matrix, and thus its
eigenvalues are real and the eigenfunctions are orthogonal.

To perform the resolvent analysis we follow the for-
mulation described by McKeon & Sharma (2010) for a pipe
flow with a smaller Reynolds numbers. The Navier-Stokes
system can be written in operator notation as

q̂ = (iωI−L )−1 f̂, (2)

where L is the linearised Navier-Stokes operator consider-
ing the mean profile U(r) as a base flow, and all variables
are Fourier transformed in time, axial and azimuthal direc-
tions. The resolvent operator is R = (iωI−L )−1, and
its singular value decomposition leads to optimal forcing
modes, leading to maximum amplification of corresponding
flow responses. More details about the present formulation
can be seen in McKeon & Sharma (2010).

DNS databases were taken from the work of El Khoury
et al. (2013) and further information can be find in that pa-
per.

(a)

(b)

Figure 1. (a) The mean flow and (b) streamwise velocity
fluctuations at Reτ = 180 (black solid line) and 550 (black
dashed line), both scaled in viscous units.

TURBULENCE STATISTICS AND SPECTRA
The mean streamwise velocity profiles (U+) and

the variance profile of streamwise velocity fluctuations
(〈u,u〉+) in inner scaling are shown in Figures 1 (a) and (b)
respectively, for Reτ = 180 and 550, where Reτ = R+ is the
friction Reynolds number. Here U is mean quantities and
u fluctuating. The inner scaling is defined by the friction
velocity uτ , and the length by the viscous length scale ν/uτ

and the superscript +. The mean velocity profiles show the
expected shape of wall-bounded turbulent flows when plot-
ted as a function of wall distance in inner scaling (1− r)+,
where r is the radial coordinate, starting at the pipe center.
Variance profiles also have the expected pattern characteris-
tic of wall-blinded turbulent flows, with a near-wall peak in
the buffer layer at (1− r)+ ≈ 15, which increases its mag-
nitude for the higer Reynolds number.

In order to visualize turbulent structures present in the
buffer layer, Figures 2 (a) and (b) show snapshots of stream-
wise velocity fluctuations (u/uτ ) in wall-parallel stations at
(1− r)+ ≈ 15, for Reτ = 180 and 550. The dominant struc-
tures have the characteristic streaky shape, elongated in the
streamwise direction x in all cases. The buffer-layer streaks,
typical structures located at (1− r)+ = 15, have a charac-
teristic azimuthal wavelength of λ+

z = r+λθ ≈ 100, as ex-
pected. These features are standard in wall-bounded turbu-
lent flows (Marusic et al., 2017; Kline et al., 1967; Gupta
et al., 1971, see for instance). In what follows we will use
z+ = r+θ as a pseudo-spanwise coordinate for simple com-
parison with results for boundary layers and channels.

The 2D inner-scaled premultiplied power-spectral den-
sity of streamwise velocity fluctuations k+x k+z E+

uu are shown
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(a) Reτ = 180

(b) Reτ = 550

(c) Reτ = 180

(d) Reτ = 550

Figure 2. Results in the buffer layer (1−r)+≈ 15 for both
Reτ = 180 and 550; (a,b) show instantaneous streamwise
velocity fluctuation (u+) field in the wall-parallel plane,
where the black rectangle here represents (λ+

x ,λ+
z ) ≈

(1000,100); and (c,d) show the 2D inner-scaled premul-
tiplied power-spectral density of the streamwise velocity
k+x k+z E+

uu.

in Figures 2 (c) and (d) at (1− r)+ ≈ 15 for Reτ = 180 and
550, respectively. Note that k+x and k+z refer respectively to
streamwise and azimuthal wavenumbers. The wavelength
combination corresponding to (λ+

x ,λ+
z ) ≈ (1000,100) is

representative of the signature of the near-wall cycle in
many studies across a range of Reynolds numbers and flow
types (Hoyas & Jiménez, 2006), as we can observe for both
analysed friction Reynolds numbers in Figures 2 (c) and (d).
This peak is due to the near-wall cycle of streaks and quasi-
streamwise vortices (Jiménez, 2013). At high Reynolds
numbers, there is also an appearance of a second peak in the
outer region of the flow, corresponding to very large scale
motions or superstructures (Monty et al., 2009). Here we
can identify this second spectral peak starting to appear at
Reτ = 550 for λ+

z ≈ 840 and λ+
x ≈ 7000.

In the present study we are investigating streaky stru-
tures, which are elongated structures in the streamwise di-
rection, where λ+

x � λ+
z (or k+x � k+z ), also with low char-

acteristic frequency. Visualisations and spectra in Figure 2
show that these are dominant structures in the buffer layer
of turbulent pipe flow.

RESULTS AND DISCUSSION
Comparison between SPOD and resolvent
modes

Figure 3 shows the first SPOD mode compared with the
optimal response from resolvent analysis at Reτ = 550 con-
sidering (λ+

x ,λ+
z ,λ+

t ) ≈ (1000,100,100), or correspon-
dent frequency ω+ = 2π/λ

+
t ≈ 0.06, which is representa-

tive of the near-wall cycle. Notice that the vertical direction
does not correspond to constant spacing in viscous length
scale, due to polar system. We can see in all results the
dominance of streaky structures and streamwise vortices,
as expected, since in the near-wall region the predominant
structures are low-speed and high-speed streaks which are
generated by streamwise vortices (Hamilton et al., 1995;
Jiménez, 2013). Similar results were obtained for Reτ =
180 at (λ+

x ,λ+
z ,λ+

t ) ≈ (1000,100,100). Figure 3 clearly
reflects this process, with vortices appearing in counter-
rotating pairs, where the region between the pair induces
flow towards the wall, or advects fluid up away from the
wall. Downflows carry high-momentum fluid and create
high-velocity streaks with u > 0 (red contour lines), and
the opposite occurs for the upflows, creating slow-velocity
streaks with u < 0 (blue contour lines). This mechanism is
known as ‘lift-up’ (Brandt, 2014). The results show good
agreement between the optimal flow response and the lead-
ing SPOD modes for both Reynolds numbers, highlight-
ing that the response to optimal forcing, obtained using the
linearized operator, is an accurate model for the leading
structures observed in the DNS for the chosen frequency-
wavenumber combination, representative of the near-wall
cycle.

Agreement between SPOD and resolvent
modes

Our aim is to perform additional, detailed quantitative
comparisons between the first SPOD mode from the DNS
and the optimal response from resolvent analysis. In order
to evaluate the agreement for several values of wavelengths
λx and λz at a fixed frequency ω , we define the metric:
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(a) SPOD mode 1

(b) Resolvent mode 1

Figure 3. Comparison between first SPOD mode (a) and
optimal response from resolvent analysis (b) using cross-
stream view of the v−w components of the vortices (ar-
rows) and the u component of the streak (red and blue con-
tours) for (λ+

x ,λ+
z ,λ+

t )≈ (1000,100,100) at Reτ = 550.

β =
〈q1SPOD ,q1res〉
||q1SPOD ||||q1res ||

, (3)

where q1SPOD is the first SPOD mode, q1res is the optimal
response from resolvent analysis and β is the projection of
q1SPOD into q1res ; note that 〈,〉 denotes inner product. Thus,
β = 1 indicates a perfect alignment between both vectors,
and β = 0 a complete mismatch.

Results of agreement between the first SPOD mode
and the optimal response from resolvent analysis in terms
of β are shown in Figure 4 (a) for Reτ = 180 at fixed fre-
quencie ω+ ≈ 0.004; and in Figure 5 (a) for Reτ = 550 at
ω+ ≈ 0.006. The red dashed line in all plots represents the
line λ+

x = 2λ+
z , or ratio λ+

x /λ+
z = 2. We can see β close

to one for a large part of the parameter space, highlighting
a significant region with very good agreement between the
first SPOD and resolvent modes, most of it below the line
λ+

x = 2λ+
z . The closest agreement (β ≈ 1) is observed for

regions with high ratio λ+
x /λ+

z > 2, which corresponds to
streaky structures, highlighting that resolvent analysis leads
to an accurate modeling of such turbulent structures in tur-
bulent pipe flow.

In order to explore features leading to better or worse
agreement (β close to 1 or 0, respectively), we evaluated for
both friction Reynolds numbers the ratio of first and second
SPOD eigenvalues in logarithmic scale log10(λ1/λ2), show
in Figure 4 (b) for Reτ = 180 at ω+ ≈ 0.004; and in Figure
5 (b) for Reτ = 550 at ω+ ≈ 0.006. These results iden-
tify the regions where the first SPOD mode is much more
energetic than the second mode, leading to a nearly rank-1

behaviour in the DNS cross-spectral density. We can ob-
serve regions where the ratio log10(λ1/λ2) is large, for the
wavenumbers with good agreement between the first SPOD
and resolvent modes, corresponding to β > 0.8 (see Figures
4 (a) and 5 (a)); this behavior is observed even for some re-
gions crossing the line λ+

x = 2λ+
z . This thus indicates that

regions where the first SPOD mode is much more energetic
than the second may be accurately modelled considering the
optimal forcing and response from resolvent analysis.

We also evaluated the ratio of optimal and suboptimal
resolvent gains in logarithmic scale log10(σ1/σ2), indicat-
ing regions where the optimal gain is much larger than the
suboptimal; these results are shown in Figure 4 (c) and
Figure 5 (c) at the two analysed Reynolds numbers, for
the considered frequencies in the preceding plots. We ob-
serve in general that regions where the first resolvent gain is
much larger than the second also correspond to the region
of good SPOD-resolvent agreement, i.e. mostly below the
line λ+

x = 2λ+
z .

The analysis above highlights that good agreement be-
tween leading SPOD and resolvent modes is observed when
a certain mode dominance is verified by analysis of data
and/or the linearised operator. We now investigate whether
this dominance can be attributed to the lift-up mechanism.
The lower triangle delimited by the white line in all plots in
Figures 4 and 5 are the streaky reagion, denoting the pres-
ence of lift-up effect, at Reτ = 180 and 550 respectively.
This reagion shows an indicator of lift-up mechanism from
resolvent analysis. Resolvent modes are here considered
to be related to the lift-up effect when the maximum abso-
lute forcing ratio max(| fy|/| fx|), max(| fz|/| fx|) (indicating
streamwise vortices as optimal forcing) and the maximum
absolute response ratio max(|u|/|v|), max(|u|/|w|) (indicat-
ing streaks of streamwise velocity as associated most am-
plified response) are simultaneously larger than 1. We can
observe that in regions satisfying these criteria are inside
the “lift-up” contour in Figures 4 and 5. The result shows
that the regions where the lift-up mechanism is present are
essentially the same as those where β is close to 1. Similar
results were obtained for higher frequencies, ω+ ≈ 0.025,
0.054 and 0.064. The present results highlight that the lift-
up mechanism is active for a wide range of frequencies and
wavenumbers in turbulent pipe flow, with a strong ampli-
fication mechanism leading to structures that dominate the
velocity field.

CONCLUSIONS
In the present study we used signal processing of a

DNS, based on SPOD, to identify coherent structures in a
turbulent pipe flow for friction Reynolds numbers Reτ =
180 and 550. In order to model such structures, a theoretical
approach, i.e. resolvent analysis, was used. The homoge-
neous directions of this flow allow the evaluation of SPOD
and resolvent analysis over a range of streamwise and az-
imuthal wavenumbers and frequencies. The mean flow was
used as a basis for the computation of resolvent modes; op-
timal responses were considered as the most likely struc-
tures to be excited by non-linear terms in the Navier–Stokes
system, particularly when the gain of the optimal forcing
is much larger than for suboptimal ones (Beneddine et al.,
2016; Cavalieri et al., 2019). Coherent structures in the flow
were extracted using SPOD, and we carried out thorough
quantitative comparisons between leading response modes
from the resolvent analysis and the SPOD eigenfunctions.
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(a) β1, ω+ ≈ 0.004

(b) log10(λ1/λ2), ω+ ≈ 0.004

(c) log10(σ1/σ2), ω+ ≈ 0.004

Figure 4. (a) Agreement between first SPOD and resol-
vent modes characterized in terms of β . (b) Ratio of first
and second SPOD eigenvalues in logarithmic scale. (c)
Ratio of optimal and suboptimal resolvent gains in loga-
rithmic scale. Results at Reτ = 180 for fixed frequencie
ω+ ≈ 0.004. The red dashed line in all plots represents the
line λ+

x = 2λ+
z . The lower triangle delimited by the white

line in all plots are the streaky reagion, denoting the pres-
ence of lift-up effect.

For both Reynolds numbers, the results show good
agreement between SPOD and resolvent, mostly for 2λ+

z ≤
λ+

x . These are parameters related to streaky structures, with
aspect ratio (streamwise over azimuthal extent) larger than
2. We evaluated the ratio between first and second SPOD
eigenvalues, as well the ratio between optimal and subop-
timal gain from resolvent analysis, and observed that the
regions where those ratios have larger values correspond to
cases where the agreement between SPOD and resolvent
modes are good.

We also explored the physical reasons behind this
agreement by introducing an indicator of the lift-up mech-
anism using the optimal forcing and associated response
from resolvent analysis. Such mechanism is considered as
active when forcing is related to streamwise vortices and
associated responses to streaks. The results show a clear
lift-up effect for wavenumbers and frequencies with good
agreement between SPOD and resolvent modes.

(a) β1, ω+ ≈ 0.006

(b) log10(λ1/λ2), ω+ ≈ 0.006

(c) log10(σ1/σ2), ω+ ≈ 0.006

Figure 5. (a) Agreement between first SPOD and resol-
vent modes characterized in terms of β . (b) Ratio of first
and second SPOD eigenvalues in logarithmic scale. (c)
Ratio of optimal and suboptimal resolvent gains in loga-
rithmic scale. Results at Reτ = 550 for fixed frequencie
ω+ ≈ 0.006. The red dashed line in all plots represents the
line λ+

x = 2λ+
z . The lower triangle delimited by the white

line in all plots are the streaky reagion, denoting the pres-
ence of lift-up effect.

In conclusion, based on our results it can be stated that
the resolvent analysis provides a simplified model leading
to an accurate representation of the streaky structures asso-
ciated to the lift-up mechanism, particularly for the stream-
wise velocity. Such structures are observed for a broad
range of frequencies and wavenumbers, which indicates that
the lift-up effect occurs over a wide range of scales in turbu-
lent pipe flow. It is not surprising to find streamwise vortices
leading to streaks in wall-bounded turbulence, since this has
been considered as an important part of the dynamics of
such flows for some time (Landahl, 1980; Hamilton et al.,
1995). The present results highlight the relevance of this
mechanism for most of the parameters considered in turbu-
lent pipe flow, which can be understood by the clear domi-
nance of the optimal forcing, with the shape of streamwise
vortices, in leading to amplified flow responses of streaky
shape. Lift-up thus is naturally selected as the preferred
mechanism giving rise to coherent structures in turbulent
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pipe flow.
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