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ABSTRACT
Starting with the N-S equations, Tang et al. (2015b)

have derived an analytical expression of Cε2
along the cen-

treline in the far-wake of a circular cylinder and found that

the value of Cε2
differs markedly from the standard value of

1.92. This present study, in which we examine the effect of

the mean shear on Cε2
in regions away from the flow cen-

treline, complements and extends our earlier examination of

Cε2
in this flow (Tang et al., 2015b). Further, an analytical

expression of Cε1
is also derived from the N-S equations.

The numerical value of Cε1
is significantly smaller than the

commonly used value of 1.44. Using these ”new” values

of Cε2
and Cε1

as new model constants in the k− ε̄ turbu-

lence model, we find that the velocity defect Ud and the

half-width of the far-wake L0 agree reasonably well with

the experimental data. When the calculation is based on

the standard model constants, there is significant departure

from the experimental data.

Introduction
The k− ε̄ turbulence model (k and ε are the mean tur-

bulent kinetic energy and its dissipation rate; the overbar

denotes time averaging), is widely used in standard Compu-

tational Fluid Dynamics (CFD) simulations. For example,

George et al. (2001) pointed out that it acccounts for about

95 % or more of the industrial use at present. The main rea-

son for its success is because CFD based on the k− ε̄ model

is easy to implement and relatively less time and storage

consuming than, for example, CFD based on the Reynolds

stress turbulence models. Also, even though the values of

the (recommended) ”standard” values of the model con-

stants (Jones & Launder, 1972; Launder & Sharma, 1974)

are not universal, the results provide the engineers with

enough accuracy for a first order analysis in many flows.

Since Jones & Launder’s (Jones & Launder, 1972) paper,

relatively little progress has been made on by and large ad-

hoc calibration of the model constants. Indeed, the values

of the model coefficients are obtained by imposing some

constraints on the models when applied to relatively sim-

ple flows. For example, decaying homogeneous isotropic

turbulence (HIT), or its surrogate, decaying grid turbulence

(ε = ∂k/∂ t), turbulent channel flow (log law region) and

homogenous shear flow (region where ε/Pk ≃ constant,Pk

is the production of k) have been used to derive numerical

values of the model constants in the transport equation of ε .

Also, the model constants are ”adjusted” until the predicted

quantities (e.g. mean velocity, friction coefficient, near wall

beahviour of ε) of a ”reference” flow agree with their ex-

perimental and/or direct numerical simulation (DNS) coun-

terparts. An example is the introduction of near-wall func-

tions in the k− ε̄ turbulence model, which has led to several

low Reynolds number k− ε̄ proposals (Launder & Sharma,

1974; Reynolds, 1976; Lam & Bremhorst, 1981; Chien,

1982; Hwang & Lin, 1998). Finally, techniques from the

renormalization group theory have also been used to de-

rive model constants for the k− ε̄ model (Yakhot & Orszag,

1986; Zhou et al., 1997; Smith & Woodruff, 1998).

Regardless of the approach used to obtain the numeri-

cal values of the model coefficients, these values must con-

form to solutions of the Navier-Stokes equation for any par-

ticular flow. This is clearly a difficult task because of the
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many free constants used in the turbulence models. The fo-

cus of the present work is on the modelled transport equa-

tion for ε , and in particular the constants Cε1
and Cε2

; the

latter involves modelling the balance between the produc-

tion due to stretching of ε and its destruction through the

action of viscosity while the former involves modelling

the source term (or production term). Already, Tang et al.

(2015b) proposed an expression for Cε2
on the centreline of

a far-wake. Here, we extend their analysis to the regions

away from the centreline and the expression for Cε1
. Fi-

nally, we will use these ”new” values of Cε2
and Cε1

as new

model constants in the k− ε̄ turbulence model to carry out

the simulation to check their validity.

Theoretical considerations
The modelled equation of ε is (see for example Pope

(2000))

dε

dt
=

∂

∂x j
(

vT

σε

∂ε

∂x j
)+Cε1

Pkε

k
−Cε2

ε
2

k
(1)

with

dε

dt
=

∂ε

∂ t
+U j

∂ε

∂x j
, (2)

where Cε1
, Cε2

and σε are model constants to be determined

and νT is the turbulent viscosity (or eddy viscosity). The

first term on the right side of (1) represents the turbulent dif-

fusion of ε , where a gradient-type model is adopted (vT /σε

is the turbulent Prandtl number). The second term repre-

sents a source term (or production) whose form is similar to

its turbulent kinetic energy counterpart. The third term is a

sink term which models the balance between the production

due to stretching of ε and its destruction through the action

of viscosity. Davidov (1961) and later Harlow & Nakayama

(1967, 1968) were the first to propose a modelled equa-

tion for the ε-equation. However, Jones & Launder (1972)

were arguably the first to propose what is regarded as the

standard k − ε model, even though the model constants

used in the current k − ε models are those proposed by

Launder & Sharma (1974), viz.

Cε1
= 1.44, Cε2

= 1.92, σε = 1.3. (3)

As mentioned in the Introduction, the numerical values of

these constants have been obtained either by requiring the

model to recover some basic physical properties of canon-

ical flows such as grid turbulence, a homogeneous shear

flow, wall flows (Launder & Sharma, 1974) or by using

the Renormalization-Group theory (e.g. Yakhot & Orszag

(1986) who obtained 1.42, 1.68 and 0.719 for Cε1
, Cε2

and

σε , respectively).

Scale-by-scale energy budget
We first apply a self-preservation analysis to the scale-

by-scale energy budget equation or transport equation for

(δq)2; (δq)2 =(δu)2 +(δv)2 +(δw)2, where δα is the ve-

locity increment δα = α(x+ r)−α(x) between two points

separated by a distance r along x, the flow direction; α

stands for either u, v, or w, v and w being velocity fluctu-

ations in the y and z directions respectively. This equation

can be expressed as:

− 1
r2

∫ r
0 s2[U

∂ (δ q)2

∂ x
]ds− 2

r2

∫ r
0 s2[

∂ v(δ q)2

∂ y
+ ∂U

∂ y
(δu)(δv)]ds

−δu(δq)2 +2ν ∂

∂ r
(δq)2 = 4

3 εr

(4)

in the two-dimensional turbulent wake. The first and sec-

ond terms in the second line of Eq. (4) represent the en-

ergy transfer and viscous diffusion of energy, respectively.

The three terms in the first line are the advection, diffu-

sion, and production terms respectively, which account for

the inhomogeneity or non-stationarity associated with the

large scales. At large r, Eq. (4) reduces to the one-point

energy budget equation, while in the limit r→0, it reduces

to the one-point transport equation of ε . For example, on

the centreline of the far-wake of a circular cylinder, where

the production is negligible (Tang et al., 2015b), the latter

is (further assuming local isotropy)

−U
∂ε iso

∂x
︸ ︷︷ ︸

Advection

−15
∂u2ε1

∂y
︸ ︷︷ ︸

Di f f usion

=
7

3
√

15

ε iso
3/2

ν1/2

[

S+2
G

Rλ

]

. (5)

(in the rest of the paper, u1, u2, and u3 are used interchange-

ably with u, v, w; similarly for x1, x2, x3 and x, y, z) where

S (<0) is the skewness of ∂u/∂x

S =
(∂u/∂x)3

(∂u/∂x)2
3/2

, (6)

G is the non-dimensional enstrophy destruction coefficient

of ε

G = u2
(∂ 2u/∂x2)2

(∂u/∂x)2
2
, (7)

and Rλ is the Taylor microscale Reynolds number

Rλ =
u2

1/2
λ

ν
, (8)

where λ = u2
1/2

/(∂u/∂x)2
1/2

is the Taylor microscale. In

Eq. (5), ε1 = 2ν

(
∂ u1

∂ x1

)2
represents one component of the

instantaneous energy dissipation rate ε

It can be shown that, on the centreline of the far-wake,

the equation for ε can be reduced to (Tang et al., 2015b).

S+2
G

Rλ

=
C

Rλ

, (9)

when the self-preservation requirements for Eq. (4) are

introduced in Eq. (5). Note that, along the centreline

of the far-wake, C = 90
7(1+2R)Rε

+ 1.9, where Rε = ε̄iso/ε̄

and R = v2/u2 ≈ w2/u2 which account for the small-scale

and large-scale anisotropy respectively (Tang et al., 2015b).
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The analytical expressions for the constant Cε2
in the far-

wake can be easily determined by identifying the terms be-

tween the modelled equation (1) and each of the exact equa-

tions for ε . Namely, combining (1) and (5), and after trivial

manipulations, leads to

Cε2 =
7

90
R2

ε (1+2R)(SRλ +2G). (10)

Now, substituting Eq. (9) into Eq. (10) leads to

Cε2
=

7

90
(1+2R)C. (11)

Using C = 90
7(1+2R)Rε

+ 1.9 in (11), we obtain Cε2
= Rε +

7
90CdR2

ε(1 + 2R). This and other expressions for Cε2
are

given in Table 1. Note that the expressions for Cε2
in

grid turbulence (e.g. Pope (2000); George et al. (2001))

and along the axis in far-field of a round jet (Thiesset et al.,

2014) have been reported previously. To date, only the grid-

turbulence expression of Cε2
has been used. It is evident

from the various forms of Cε2
(Table 1) that one cannot ex-

pect the grid turbulence value of Cε2
to apply to other flows.

This is evident from Table 1 which implies that the value of

Cε2 in each flow must be consistent with its expression for

that flow.

Focus on the wake
Note that the expressions for Cε2 in Table 1 for the jet

and wake only apply to the flow centreline. We now focus

only on the wake and specifically on the variations of Cε2

and Cε1 in the regions away from the flow centreline. With

regard to Cε2, Fig. 1 shows the distribution of Cε2, as a func-

tion of y/L0 (a detailed description of the measurements is

given in Lefeuvre et al. (2014); Rd = U∞d/ν is 1400 and

the corresponding Rλ is about 40 on the centreline). It can

be seen from this figure that there is a weak dependence of

Cε2 on y/L0 in the region close to the flow centreline. In

particular, Cε2 ≈ 1.60 at y/L0 = 0, which is in good agree-

ment with the calculation using the expression in Table 1

for the wake. Also shown in this figure are the distribution

of (U∞ −U)/Ud , which shows that the range y/L0 < 0.5
may be considered as the main region of the flow. Namely,

at this Rd (=1400), a proper value for Cε2 should be about

1.6; later, we will choose Cε2 ≈ 1.55 for a slightly higher

Rd (=2000) for testing.

Now, we examine the dependence of Cε1, which in-

volves modelling of the source term (or production term),

on y/L0. From Eqs. (4) and (1), we can write the expres-

sion for Cε1 as

lim
r→0

2

r2

∫ r

0
s2[

∂U

∂y
(δu)(δv)]ds/r3 ≡Cε1

Pkε̄

k
, (12)

which, after trivial manipulations, leads to

Cε1
=

7ν ∂ u
∂ x

∂ v
∂ x

ε

q2

uv
. (13)

If we assume self-preservation in the wake, Cε1
can be nor-

malized by the maximum defect velocity Ud and the half-
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Figure 1. Dependence of Cε2
on y/L0 in the far-wake

(Rλ = 40 on the centreline). The black curve: (U∞−U)/Ud

Browne et al. (1987). The dashed line: 1.60.
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Figure 2. Dependence of Cε1
on y/L0 in the far-wake. The

black curve: production of k, normalized by Ud and L0

(Browne et al., 1987). The dashed line: 0.38.

width of the wake L0, viz.

Cε1
= ε

+
2 ε

+ q+2

uv+
, (14)

where the superscript + denotes normalisation by Ud and

L0; ε
+
2 = 7ν

∂ u
∂ x

∂ v
∂ x

L0

U3
d

. Note that each term in Eq. (14)

should be a constant for a given y/L0. Fig. 2 shows the

distribution of Cε1
, as a function of y/L0, obtained with the

same data as Fig. 1. Also shown in this figure is the pro-

duction of k. Interestingly, in the region close to y/L0 ≈ 1

where the production term is large, Cε1
is approximately

constant, with a value of about 0.38. Since Cε1
is basically

the modelling of the production term, a proper value for Cε1

should be about 0.38; we will use this ”new” value, together

with the ”new” value for Cε2
obtained above, to carry out a

check of their validity.
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Table 1. Expressions of Cε2
in various turbulent flows.

Cε2
= (n−1)

n
, n ≤−1 decaying grid turbulence

Cε2
= (1+2R)

2+R
along axis in far-field of a round jet

C = 90
7(1+2R)Rε

+ 1.9 centreline of the far-wake

Figure 3. Schematic computational domain and coordi-

nate axis. U is the mean velocity; U∞ is the free stream

velocity; Ud is the maximum velocity defect; L0 is the half-

width of the wake. Note that U and Ud are arbitrarily shown

on the centreline.

Numerical validation
In order to validate the ’new’ values obtained from

N-S equations, we employ a commercial code, ANSYS-

Fluent, for the simulations. The free-steam velocity U∞

is 10.6 m/s and the cylinder diameter d is 3 mm. The

corresponding Rd is 2000. The computational domain for

the cylinder wake extends 10 and 600 diameters upstream

and downstream from the cylinder centre respectively. A

schematic diagram of the computational domain is shown

in Fig. 3. Fig. 4 shows the downstream evolution of

the velocity defect Ud and half-width of the wake L0 at

Rd = 2000. The red and blue curves are calculated using

k − ε models with standard model constants (Cε1
= 1.44,

Cε2
= 1.92) and ’new’ constants obtained from N-S equa-

tions (Cε1
= 0.38, Cε2

= 1.55) respectively, while the other

model constants are the same as in the standard k− ε mod-

els. The experimental data at the same Rd are reproduced

from Tang et al. (2015a). Also shown are the experimen-

tal data of Aronson & Lofdahl (1993) at comparable Rd

(=1840). Ud and L0 agree reasonably well with the ex-

perimental data when the ”new” values of Cε2
and Cε1

are

used. However, when the calculation is based on the stan-

dard model constants, there is significant departure from the

experimental data.

1 Conclusions
In this paper, we reappraise the constants Cε2

and Cε1

in the k− ε̄ turbulence model. We first examine the effect

of the mean shear on Cε2
in regions away from the flow cen-

treline, which complements and extends our earlier exami-

nation of Cε2
in this flow. Further, an analytical expression

of Cε1
is also derived from the N-S equations. The numer-

ical value of Cε1
(≈ 0.38) is significantly smaller than the

commonly used value of 1.44. Using these ”new” values of

Cε2
and Cε1

as new model constants in the k− ε̄ turbulence

model, we find that Ud and L0 agree reasonably well with

the experimental data, whereas there is significant departure

from the experimental data when the calculation is based on

the standard model constants.
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