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ABSTRACT
Nonlinear three-dimensional steady solutions to the

Boussinesq equations have been discovered for Rayleigh–
Bénard convection in three-dimensional periodic domains
between horizontal plates of constant temperature differ-
ence. For the Prandtl number Pr = 1, an unstable three-
dimensional steady solution, which bifurcates from a ther-
mal conductive state at the Rayleigh number Ra ∼ 103, has
been tracked up to Ra ∼ 107 by using a Newton–Krylov
iteration. At large Ra, the steady solution exhibits small-
scale thermal plume structures near the walls with large-
scale convection cells, and the Nusselt number Nu which
scales with Ra as Nu ∼ Ra0.31, quite similar to the flow
and thermal structures and the scaling law observed in tur-
bulent convection. The solution also reproduces the mean
temperature profiles and the root-mean-square in the veloc-
ity and temperature fluctuations of the turbulent state. The
hierarchy of the vortical structures has been observed by
employing the coarse graining with a Gaussian low-pass
filter. The largest-scale structures correspond to the large-
scale convection cells with the channel width H, whereas
the smallest-scale structures are the near-wall vortical struc-
tures with approximately twice the thermal boundary layer
thickness δθ . The scale ratio is H/(2δθ )≈ 16 at Ra ∼ 107.
In the bulk region away from the wall, the energy trans-
fer in the wavenumber space has been discussed. In the
intermediate-scale range, the kinetic energy is transferred
from the large scale to the small scale, while maintain-
ing the constant energy flux Π , which is comparable with
the energy dissipation rate ε , and the energy spectral func-
tion E exhibits the Kolmogorov’s −5/3 power law, E ≈
1.5ε2/3k−5/3.

Introduction
Rayleigh–Bénard convection is the buoyancy-driven

flow between the horizontal plates heated from below, and
it is one of the most canonical flows widely observed in en-
gineering applications and nature. The effect of the buoy-
ancy on the flow is characterized by the Rayleigh number
Ra. When Ra exceeds a certain critical value Rac, a ther-
mal conductive state becomes unstable to infinitesimal per-
turbations, and two-dimensional steady convection rolls ap-
pear (Drazin & Reid, 1981). At higher Ra, the convection
becomes time-periodic, and subsequently exhibits turbulent
states with multiscale thermal and vortical structures. One
of the primary interests in the Rayleigh–Bénard problem

is how the turbulent heat transfer scales with the Rayleigh
number, that is, the dependence of the Nusselt number Nu
on Ra. Over half a century ago, Malkus derived a scaling
Nu ∼ Ra1/3 (Malkus, 1954) by a marginal stability argu-
ment, based on the assumption that the thermal boundary
layers adapt their thickness δθ as δθ/H ≈ (Ra/Rac)

−1/3,
where H is the height of the fluid layer, so that the local
Rayleigh number in the boundary layer becomes marginally
stable. Subsequently, Kraichnan predicted a transition of
the boundary layer from laminar to turbulent state, and de-
rived the asymptotic scaling Nu ∼ Ra1/2 with logarithmic
correction for very high Ra (Kraichnan, 1962), based on the
mixing-length theory. The scaling Nu ∼ Ra1/2 is currently
known as the ‘ultimate’ scaling, and obtained as the rigor-
ous upper bound on the Nusselt number Nu by variational
method (Doering & Constantin, 1996; Plasting & Kerswell,
2003). In conventional turbulent Rayleigh–Bénard convec-
tion, however, the ultimate scaling has not been observed
yet. A prominent experiment by Niemela et al. (2000) for
very high Ra exhibits Nu ∼ Ra0.31 even at Ra ∼ 1017. Re-
cently, Grossmann and Lohse have proposed the scaling
theory (Grossmann & Lohse, 2000) of global properties for
Ra and the Prandtl number Pr, based on decomposing the
total scalar and energy dissipation into contributions from
the bulk region away from the walls and the boundary layer
near the walls. A lot of experiments and numerical simu-
lations have demonstrated the validity of the theory (Ahlers
et al., 2009; Stevens et al., 2013). In the theory, the scaling
Nu∼Ra1/3 is derived in the high Ra range 108 ≲Ra≲ 1014

for Pr ∼ 1, and the transition to the ultimate scaling is also
predicted for Ra ≳ 1014. For the ultimate scaling, however,
they have estimated that the effective scaling is approxi-
mately Nu ∼ Ra0.38 due to logarithmic corrections. Al-
though some experimental results have shown the transition
to Nu ∼ Ra0.38 (Chillà & Schumacher, 2012), the high-Ra
scaling is still being discussed. For 108 ≲ Ra ≲ 1011, on the
other hand, a lot of experimental and numerical data exhibit
Nu ∼ Ra0.31 (see, e.g. He et al., 2012), close to the classical
scaling Nu ∼ Ra1/3.

Recently, intriguing results in two-dimensional
Rayleigh–Bénard convection have been reported by Wal-
effe et al. (Waleffe et al., 2015; Sondak et al., 2015). They
have found the scaling Nu ≈ 0.115Ra0.31, quite similar to
the three-dimensional turbulent data fit Nu ≈ 0.105Ra0.312

(He et al., 2012), in steady convection for high Ra range
107 ≲ Ra ≲ 109. In their work, optimal two-dimensional
steady solutions have been obtained so as to maximize
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Nu by changing the horizontal period of the solutions.
The scaling Nu ∼ Ra0.31 is achieved by a family of two-
dimensional steady solutions with the horizontal period
which decreases with increasing Ra. Although the result
suggests that quite simple coherent structures can capture
the essence of the turbulent convection, it also implies that
any single two-dimensional steady solution with the fixed
horizontal period (fixed maximal wavelength) cannot do it.

More recently, variational problems (Hassanzadeh
et al., 2014; Tobasco & Doering, 2017) to find a divergence-
free velocity field optimizing scalar transport have been
discussed. Motoki et al. (2018a,b) have found three-
dimensional steady velocity fields as optimal states which
maximize heat transfer between two parallel plates of a con-
stant temperature difference under the constraint of fixed
total enstrophy. For the large total enstrophy, the optimal
states consist of convection with hierarchical self-similar
vortical structures, and exhibit the scaling which corre-
sponds to the ultimate scaling Nu ∼ Ra1/2. It should be
noted that the three-dimensionality of velocity fields leads
to hierarchical multiscale structures, enhancing heat trans-
fer, in the variational problems. In the Rayleigh–Bénard
convection with a horizontally periodic square domain, a
three-dimensional steady solution with convection cells also
bifurcates from a conductive solution at the same critical Ra
as a two-dimensional steady solution (see the upper-left in-
set in figure 1), since the convection rolls in any horizontal
direction can exist simultaneously. The three-dimensional
steady solution is already unstable at its onset and so does
not appear in transition to turbulence, but the unstable solu-
tion can exist until the high Rayleigh number Ra ∼ 107. In
this paper, we report that the three-dimensional steady solu-
tion at high Ra consists of hierarchical multiscale structures,
and exhibits several important turbulence statistics.

Governing equations
Let us consider the fluid layer between two horizontal

plates heated from below and cooled from above, and sup-
pose the Boussinesq approximation, in which the fluid is in-
compressible and the density variation is taken into account
just for the buoyancy term. The time evolution of velocity
field u(x, t) = uex + vey +wez and temperature field T (x, t)
are described by the Boussinesq equations

∇ ·u = 0, (1)
∂u
∂ t

+(u ·∇)u = − 1
ρ

∇p+ν∇2u+gαT ez, (2)

∂T
∂ t

+(u ·∇)T = κ∇2T, (3)

where p(x, t) is pressure, and ρ ,ν ,g,α and κ are a mass
density, a kinematic viscosity, an acceleration due to grav-
ity, a volumetric thermal expansivity and a thermal diffu-
sivity, respectively. ex and ey are mutually orthogonal unit
vectors in the horizontal directions while ez is a unit vec-
tor in the vertical direction. The two horizontal plates are
positioned at z = 0 and z = H, and the flow is periodic in
the x- and y-directions with periods, Lx and Ly. The top
(or bottom) wall surface is no-slip and impermeable, and
held at lower (or higher) constant temperature T = 0 (or
T = ∆T > 0). The thermal convection is characterized by
two dimensionless parameters, the Rayleigh number Ra and
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Figure 1. Nusselt number Nu as a function of Rayleigh
number Ra. The red and blue solid lines respectively rep-
resent the three-dimensional and two-dimensional steady
solutions bifurcating from the thermal conductive state at
Ra ≈ 1879. The open circles exhibit the present turbu-
lent data obtained in the horizontally-square periodic do-
main, and the filled circles show experimental turbulent
data (Niemela & Sreenivasan, 2006) in cylindrical contain-
ers. The black dashed and chain lines denote turbulent
data fits Nu = 0.088Ra0.32 (Niemela & Sreenivasan, 2006)
and Nu = 0.105Ra0.312 (He et al., 2012), respectively. The
blue dashed line indicates the scaling Nu−1 = 0.115Ra0.31

(Waleffe et al., 2015; Sondak et al., 2015) achieved by a
family of two-dimensional steady solutions with an opti-
mal aspect ratios so as to maximize Nu. The orange solid
and dashed lines respectively indicate the best upper bound
Nu−1= 0.02634Ra1/2 (Plasting & Kerswell, 2003) and the
scaling Nu−1 = 0.0236Ra1/2 (Motoki et al., 2018a) eval-
uated from the optimal scaling in the variational problem to
maximize heat transfer. The black solid lines in the upper-
left inset show the maximal and minimum value of Nu in the
three-dimensional time-periodic solution bifurcating from
the two-dimensional steady solution at Ra = 3.55 × 104.
The lower-right inset shows the compensated Nu.

the Prandtl number Pr given by

Ra =
gα∆T H3

νκ
, Pr =

ν
κ
, (4)

and the vertical convective heat transfer is quantified by the
Nusselt number defined as

Nu = 1+
⟨wT ⟩

κ∆T/H
, (5)

where ⟨·⟩ represents a volume and time average.

Numerical methods
The equations (1)–(3) are discretized by employing a

spectral Galerkin method based on the Fourier series expan-
sion in the periodic horizontal directions and an expansion
in terms of the Chebyshev polynomials in the vertical di-
rection. Aliasing errors are removed with the aid of the 2/3
rule for the Fourier transform and the 1/2 rule for the Cheby-
shev transform. Time advancement is carried out with the
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Figure 2. Mean temperature and root-mean-square (RMS)
of the temperature and velocity fluctuations as a function of
(a,b) z/H and (c,d) z/δθ in the three-dimensional steady
solution (lines) and the turbulent state (symbols). The blue,
green and red plots are respectively obtained at Ra = 105,
Ra = 106 and Ra = 107, and the arrows in (a,b) indicate the
direction of increasing Ra. The solid lines and circles in (d)
show the vertical velocity, and the dashed lines and squares
are the horizontal velocity. δθ is the thermal boundary layer
thickness scales as δθ/H = 1/(2Nu).

Crank–Nicholson scheme for the diffusion terms and the
second-order Adams–Bashforth scheme for the nonlinear
and buoyancy terms. The nonlinear steady solutions are
obtained by the Newton–Krylov iteration (for details, see
Sondak et al., 2015; Motoki et al., 2018b).

In this paper, we present steady solutions and turbulent
states obtained in the horizontally-square periodic domain
of L = Lx = Ly = (π/2)H for Pr = 1. For the domain size
L = (2π/αc)H, where αc = 3.117 is the critical wavenum-
ber corresponding to the minimal critical Ra = 1708 in the
linear stability analysis (Drazin & Reid, 1981), we have
confirmed that the effects of the domain size are insignifi-
cant on the scaling of Nu with Ra for large Ra as well as the
flow and thermal structures in the three-dimensional steady
solutions, which will be discussed in the following sections.
In addition, for Pr = 7, we have obtained similar results.
The numerical computations are carried out on 1283 grid
points for Ra < 107 and 2563 grid points for Ra ≥ 107. It
has been validated in comparison between the two resolu-
tions that the results presented in this paper are independent
of the spatial resolution at Ra ∼ 107.

Nu-Ra scaling
Steady solutions, which bifurcate from a conductive

state at Ra ∼ 103, has been obtained up to Ra ∼ 107 (figure
1). The red line shows a three-dimensional steady solution,
and it exhibits the scaling Nu ∼ Ra0.31 at Ra ≳ 105, cor-
responding to the scaling, Nu ≈ 0.088Ra0.32 (Niemela &
Sreenivasan, 2006) (black dashed) and Nu ≈ 0.105Ra0.312

(He et al., 2012) (chain), observed in large-Rayleigh-
number turbulent convections for Ra ≲ 1011. The open
and filled circles respectively represent the present turbu-
lent data in the horizontally-square periodic domain and

 0  1
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Figure 3. Flow and thermal structures in the three-
dimensional steady solution at (a) Ra = 105, (b) Ra = 106

and (c) Ra = 107, and (d) the turbulent state at Ra = 107.
The yellow and gray objects respectively represent the iso-
surfaces of the temperature T/∆T = 0.6 and the posi-
tive second invariant of the velocity gradient tensor, (a)
Q/(κ2/H4) = 1.28×105, (b) Q/(κ2/H4) = 2.4×106 and
(c,d) Q/(κ2/H4) = 8× 107. The contours represent tem-
perature field T in the plane y/H = π/4(=−π/4), and the
velocity vectors (u,w) are superposed in the enlarged views
in (c,d). δθ is the thermal boundary layer thickness scales
as δθ/H = 1/(2Nu).

the experimental data obtained in a cylindrical container
(Niemela & Sreenivasan, 2006). The heat flux of the three-
dimensional steady solution is only slightly larger than that
of the turbulent states, and it is quite similar to the opti-
mal heat flux Nu− 1 ≈ 0.115Ra0.31 (Waleffe et al., 2015;
Sondak et al., 2015) (blue dashed) achieved by a family of
two-dimensional steady solutions with optimal horizontal
periods so as to maximize Nu.

The orange dashed line indicates an optimal scaling
Nu−1 ≈ 0.0236Ra1/2 (Motoki et al., 2018a), correspond-
ing to the rigorous upper bound Nu − 1 ≈ 0.02634Ra1/2

(Plasting & Kerswell, 2003) (orange solid) and the asymp-
totic ultimate scaling in the Rayleigh–Bénard convection.
The optimal scaling is achieved by the three-dimensional
optimal states in the variational problem of maximizing heat
transfer under the constraint of fixed total enstrophy. The
optimal solutions require external body force which is dif-
ferent from buoyant force, since the optimization does not
necessarily require that the velocity fields obey particular
physical equations of motion, e.g., the Boussinesq equation.
However, the three-dimensional optimal solutions are con-
tinuously connected to the present three-dimensional steady
solution to the Boussinesq equation, via homotopy from the
body force to the buoyancy.

The three-dimensional steady solution reproduces the
mean temperature of convective turbulence in the whole
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region and furthermore the RMS values are also in good
agreement with each other (figure 2). (·) represents the hor-
izontal and time average, and (·)′ denotes the fluctuation
about the horizontal average for the steady solutions and
the horizontal and time average for the turbulent states. In
the bulk region, all the mean temperature profiles are flat-
tened as a result of almost complete mixing by large-scale
convection. Unstable stratification is significant only in the
near-wall region. The thermal boundary layer thickness δθ
scales as

δθ/H = 1/(2Nu)∼ Ra−0.31, (6)

in accord with the marginally stable argument by Malkus
(Malkus, 1954). As shown in figures 2(c,d), the positions
of the maximal peaks of T ′

RMS and u′RMS scale as z/δθ ≈ 1.

Flow and thermal structures
Figure 3 visualizes spatial flow and thermal structures

in the three-dimensional steady solution and the turbulent
state at Ra = 105,106 and 107. The yellow objects show
isosurfaces of the temperature T/∆T = 0.6, representing
high-temperature plumes, and the gray objects display vor-
tex structures visualized by the positive second invariant of
the velocity gradient tensor, Q =−(∂ui/∂ x j)(∂u j/∂xi)/2.
The three-dimensional steady solution consists of large-
scale convection cells and small-scale vortex structures. As
Ra increases, smaller plume structures (and relevant smaller
and stronger tube-like vortex structures) appear near the
walls while maintaining large-scale structures. It should be
stressed that the single three-dimensional steady solution
spontaneously reproduces multiscale structures. In two-
dimensional steady convection (Waleffe et al., 2015), the
appearance of such smaller-scale plume (and vortex) struc-
tures has not been observed for a fixed horizontal period,
and the scaling Nu ∼ Ra0.31 is achieved by a family of so-
lutions with the smaller horizontal periods with increasing
Ra.

At Ra = 107 (figure 3c), near the wall, we can ob-
serve the sheet-like thermal plumes with the smallest-scale
tube-like vortices visualized by the positive second invari-
ant, which are quite similar to those observed in the snap-
shot of the turbulent state (figure 3d). The smallest-scale
structures are generated in the unstable stratification near
the wall, and the size of the plumes and vortices scale with
the thermal boundary layer thickness δθ .

Hierarchical vortex structures
Developed turbulence organizes hierarchical coherent

vortical structures with various scales (Goto et al., 2017;
Motoori & Goto, 2019). As shown in figure 3, we can ex-
tract smallest-scale vortical structures by employing the iso-
surfaces of Q. However, it is difficult to find out large- and
intermediate-scale coherent structures. To examine a hier-
archy in the three-dimensional steady solution, we consider
coarse graining the velocity field u(x). The coarse-grained
velocity field u∗(x) is obtained by the Gaussian low-pass
filter (Lozano-Durán et al., 2016; Motoori & Goto, 2019)
as

u∗(x) =
∫

V
a ·u(x′)exp

{
−
(

π∆r
σ

)2
}

dx′, (7)

(a) (b)

(c) (d)

(e) ( f ) 

(g) (h)

Figure 4. Hierarchical vortical structures in the three-
dimensional steady solution at Ra = 2.6× 107, which are
visualized by the coarse graining with the Gaussian low-
pass filter. (a) Non-filtered velocity and temperature fields.
The red and yellow objects show the isosurfaces of the sec-
ond invariant of the velocity gradient tensor, Q/(κ2/H4) =

2×108, and the temperature T/∆T = 0.6, respectively. (b-
h) Filtered velocity fields with the various filter widths.
The vortical structures are visualized by the isosurfaces
of Q/(κ2/H4) of the filtered velocity fields with the fil-
ter width σ = H(= 2L/π) (blue), σ = L/4 (light blue),
σ = L/8 (green), σ = L/16 (light red), σ = L/32 (red),
and they are superposed in (g,h). The isosurface levels are
(blue) 5×105, (light blue) 4×106, (green) 1.2×107, (light
red) 3×107, (red) 1.6×108.

where ∆r =
√

(x′− x)2 +(y′− y)2 +(z′− z)2, σ is the filter
width and a is constant such that the integral of the kernel
over the control volume V is unity. In the wall-normal direc-
tion, the Gaussian filter is applied by employing the method
of reflecting it at the wall, proposed by Lozano-Durán et al.
(2016).

Figure 4 shows hierarchical vortical structures which
are found out in the three-dimensional steady solution at
Ra= 2.6×107. Non-filtered velocity and temperature fields
are shown in figure 4(a), and isosurfaces of the positive
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Figure 5. (a) Energy spectra E(k,z) and (b) energy flux
Π(k,z), at the center of the fluid layer, z=H/2, in the three-
dimensional steady solution at Ra = 2.6× 107. The lateral
and longitudinal axes are normalized by the Kolmogorov
micro-scale length η(z) = (ν3/ε(z))1/4 and the energy dis-

sipation rate at each hight, ε(z) = ν |∇u|2. The red dashed
lines in (a) and (b) indicate E = 1.5ε2/3k−5/3 and Π/ε = 1,
respectively.

values of Q of the filtered velocity field u∗ with the fil-
ter width σ = H(= 2L/π),L/2,L/4,L/8 and L/16 are re-
spectively displayed in figure 4(b-f ). The blue objects in
figure 4(b) are largest-scale structures corresponding to the
large-scale convection cells, whereas the red objects in fig-
ure 4(f ) are smallest-scale vortical structures with the size
of σ/2 = L/32 ≈ 2δθ , which coincide with the vortices ob-
served in the non-filtered velocity field (figure 4a). The
light blue, green and light red objects in figures 4(c,d,e)
display intermediate-scale vortical structures with the eight,
four and two times the size of the smallest-scale vortices, re-
spectively. We can see that the smaller-scale vortical struc-
tures exist closer to the wall. For the variational problem
(Motoki et al., 2018a), similar hierarchal structures can be
found in the three-dimensional steady optimal states. In the
velocity field optimized within a two-dimensional field, on
the other hand, such multiscale structures have not been ob-
served (Hassanzadeh et al., 2014).

Energy transfer in wavenumber space
In the three-dimensional steady solution at large Ra, as

can be seen in figures 4(d,e), the intermediate-scale vortical
structures exist in the bulk region as well as the near-wall
regions. Figures 4(g,h) show the superposed structures, and
from their spatial distribution it is conjectured that the bulk
flow is composed of the multiscale coherent structures.

Figure 5(a) shows the energy spectral function E(k,z),

at the center of the fluid layer, z = H/2, defined as

E(k,z) =
L

2π ∑
k− ∆k

2 <|k2D|<k+ ∆k
2

1
2
|ũ(k2D,z)|2, (8)

where (̃·) indicates the Fourier coefficients only in the pe-
riodic horizontal (x- and y-) directions. k2D = (kx,ky) and

k =
√

k2
x + k2

y are respectively the wavenumber vector and

its magnitude, and ∆k = 2π/L. The lateral and longitu-
dinal axes are normalized by the Kolmogorov micro-scale
η(z) = (ν3/ε)1/4, which is based on the energy dissipa-

tion rate at each hight, ε(z) = ν |∇u|2. In the wavenum-
ber band 2π/(L/4) ≲ kη ≲ 2π/(L/16), corresponding to
the intermediate-scale range, we can find that the energy
spectra exhibit the well-known Kolmogorov’s −5/3 power
law, E = CKε2/3k−5/3 (Kolmogorov, 1941), with the con-
stant CK ≈ 1.5 which is comparable with the Kolmogorov
constant in the inertial subrange of high-Reynolds-number
turbulence (Sreenivasan, 1995).

We here consider the energy flux in the wavenumber
space, Π(k,z) (Mizuno, 2016), defined as

Π(k,z) = ∑
k′≥k

∑
k− ∆k

2 <|k2D|<k+ ∆k
2

T s(k2D,z), (9)

T s(k2D,z) = ℜ

[
∂ jũi(ũiu j)

† − 1
2

dũ j(ũ jw)
†

dz

]
, (10)

where (∂1,∂2,∂3) = (ikx, iky,∂/∂ z) and † denotes the com-
plex conjugate. T s(k2D,z) represents the energy transfer
between the Fourier modes, and the sum of all the spec-
tral components does not contribute to the total energy bud-
get, i.e., ∑k2D T s(k2D,z) = 0. The energy flux in the three-
dimensional steady solution is shown in figure 5(b). In the
intermediate-scale range, the energy flux represents a pos-
itive value scales with the same order of the energy dissi-
pation rate ε , in accord with the the Kolmogorov-Obukhov
energy cascade view that the energy flux in inertial subrange
remains constant, and balances with the energy dissipation
rate. It is quite intriguing that such a time-independent so-
lution exhibits the energy transfer from large to small scale
in the wavenumber space, in common with developed tur-
bulence.
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