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ABSTRACT
Time-resolved Particle Image Velocimetry (PIV, 10

kHz) was used to measure the flow-field of a Mach 0.6
axisymmetric jet. The field was decomposed into its req-
uisite spatial POD eigenfunctions, and the time dependent
coefficients were recovered. An Artificial Neural Network
(ANN) and a Linear Stochastic Estimation (LSE) model
were then trained to estimate the first five time-dependent
POD coefficients from five point velocity measurements
made by ”virtual crosswires” in the mixing layer. We show
that the prediction accuracy is strongly dependent on the
POD mode number for both models. On average, the ANN-
based model is able to predict the velocity fluctuations more
accurately than the LSE-based model. Finally, we examine
the estimated reduced-order velocity fields and their cor-
relation to analytically reconstructed reduced-order veloc-
ity fields. Possible extensions of this method are also dis-
cussed.

INTRODUCTION
LSE has been used as a tool for estimating condi-

tional velocity fields in turbulent flows since its introduc-
tion by Adrian (1977). This method has proven its useful-
ness in modeling relationships between measured quantities
in turbulent flows, both in its simplicity and overall accu-
racy. Several powerful extensions of this method have also
been proposed and implemented. Bonnet et al. (1994) de-
tailed one such extension that takes advantage of the low-
dimensional capabilities of Proper Orthogonal Decomposi-
tion (POD) and the estimation abilities of LSE to identify
structure in turbulent shear flows. This method, called the
POD/LSE Complementary Technique, was later modified to
be able to predict the time-dependent behavior of the POD
modes given spatially sparse measurements. This modi-
fied version was shown by Pinier et al. (2007) and Picard
& Delville (2000) to be useful in informing flow control
schemes and modeling structure in turbulent flows, respec-
tively.

In this document, we re-examine Stochastic Estima-
tion, and formulate it to take advantage of the predictive
power of Artificial Neural Networks (ANNs). This formu-
lation is then integrated into the Modified POD/LSE Com-
plementary Technique, where it is used to estimate the fluc-
tuating velocity field in the mixing layer of a Mach 0.6 ax-
isymmetric jet. We also offer a quantitative comparison to
the traditional LSE-based variation to benchmark its perfor-
mance.

EXPERIMENTS
The data used in this study was collected in the ane-

choic chamber at the Skytop Turbulence Lab at Syracuse
University by Berger et al. (2015). The nozzle used in the
experiments is converging only with an exit diameter of
50.8 mm. Exact specifications can be found in Tinney et al.
(2004). The baseline operating condition of M j = 0.6 corre-
sponds to a dimensional velocity of 206 m/s, and a Reynolds
number based on the nozzle diameter, Re j of approximately
693,000.

In the near-field, Kulite XCE-093-5G series transduc-
ers sampled pressure at 14 locations, at a rate of 40.96
kHz. Two-component velocity was captured using a time-
resolved 10 kHz PIV (TRPIV) setup. The laser sheet was
positioned to illuminate the flow in a stream-wise oriented
plane centered around a location approximately 4.75 Dh
(11.5 in.) downstream of the nozzle exit plane. A single
Photron FASTCAM camera was used to image the flow
field and the image processing and vector calculation was
performed in LaVision’s DaVis software package. A photo-
graph of the near-field can be seen in Figure 1. The TRPIV
database consists of three sets of 45,000 two-component
PIV snapshots collected over three 15 second experimen-
tal runs. Only the first 15,000 snapshots were used in this
study. This corresponds to Case 6 in Berger’s database, and
will be referred to as such in future sections.
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Figure 1. Experimental setup for 2013 TRPIV experi-
ments. Location of Kulite transducers circled in white. Ap-
proximate location of TRPIV window indicated by green
box. Adapted from Berger (2014).

METHODS
Stochastic Estimation

Stochastic estimation as proposed by Adrian (1977,
1979) relies on the idea of conditional averages. He hypoth-
esized that conditional averaging can be utilized to make the
best mean-square estimate the flow state at a time t and loca-
tion x′ given the flow state at a separate location, x= x′+δx.
More succinctly, the estimate of conditional events at x′ are
a function of the unconditional events at location x, and the
distance between the two locations (Equation 1).

ũ(x′, t) = f{u(x, t),δx}. (1)

This representation of the conditional events ũ can be
expanded using a Taylor series, as in Equation 2. Terms
of order two and greater are neglected for simplicity, thus
ensuring a linear estimate.

ũi(x′, t) =
Nc

∑
j=1

Ns

∑
k=1

bi j(x′,xk)u j(xk, t)+O[u2
j ]. (2)

The index i represents the ith component of a vec-
tor valued flow state variable, Ns is the number of spatial
points x where the unconditional events are measured, and
Nc is the number of components of a vector valued uncon-
ditional event. This equation can be further simplified into
a more generic form to collapse the double summation, as
in Delville (1994).

ṽ(x′, t) =
Nm

∑
j=1

h j(x′)g j(t)+O[g2
j ]. (3)

In Equation 3, the summation is now over the prod-
uct of the total number of components and spatial measure-
ments. This equation is the final, most simplified form of
the conditional approximation, ṽ(x, t), based on uncondi-
tional events, g j(t). To produce an optimal estimate, the
error between this approximation and the actual measured
value of the conditional events must be minimized. This re-
sults in an over-determined system of equations for which

an optimal least squares solution can be found using Equa-
tion 4.

H = (GT G)−1GT V (4)

The resulting coefficient matrix H can be used to es-
timate conditional events ṽ(x, t) given measured uncondi-
tional events g j(t). Interesting features of the resulting esti-
mate and some consequences of this formulation have been
discussed by Adrian & Moin (1988), Tinney et al. (2006),
and Delville (1994).

Modified POD/LSE Complementary Tech-
nique

The POD/LSE Complementary Technique was pro-
posed by Bonnet et al. (1994) to take advantage of the
strengths of POD and LSE. This method has been shown
to be extremely useful in studying the low-dimensional be-
havior of turbulent mixing layers (Bonnet et al. (1998)). In
the Modified Complementary Technique, LSE is used to es-
timate the time dependent POD coefficients (ai(t) in Equa-
tion 5) directly. These coefficients can then be combined
with the spatial eigenfunctions (φi(~x in Equation 5) to re-
construct a reduced order representation of the flow field. In
this formulation, some observable in the flow, such as pres-
sure or velocity at one or several points, is used to define
the unconditional events in Equation 6. The time-dependent
POD coefficients serve as the conditional events. The LSE
model is then trained to estimate a subset of the coefficients
directly from these measurements.

ũ(~x, t) =
N

∑
i=1

ai(t)φi(~x) (5)

ãn(t) = f{u(x, t),δx}. (6)

The time-dependent POD coefficients ai(t) are made
up of contributions from each individual velocity compo-
nent, ui. When applying the Modified Complementary
Technique, the LSE model can be trained to either estimate
the overall time-dependent coefficients, or each one of these
individual contributions. In the current study, we present
results corresponding to estimation of the full coefficients
only. This is called Overall estimation in future sections.

Artificial Neural Networks
A neural network consists of artificial neurons con-

nected to one another with corresponding weights and bi-
ases and are commonly referred to as perceptrons. Per-
ceptrons with two or more hidden layers between the input
and output nodes are often classified as DNNs. The power
of these networks to approximate complex non-linear func-
tions lies in the Universal Approximation Theorem (UAT).
It can be shown that on compact subsets of Rn, a perceptron
with only a single hidden layer and finite number of param-
eters can be used to approximate any continuous function to
arbitrary precision as shown by Cybenko (1989). For very
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Figure 2. Schematic of artificial neural network with a sin-
gle hidden layer. Associated symbols and matrices given in
Equations 7 - 9.

complex problems, however, single layer networks quickly
become unwieldy. Deepening the network increases its ef-
ficiency as compared to a single layer perceptron, and often
allows for fewer overall nodes.

A fully-connected neural network is one in which each
node in each respective layer is connected to every node in
the layers both before and after it (sketched in Figure 2). A
weight is associated with each of these connections, and a
bias node can be included to account for any constant offsets
in the data. At each node in a given layer, two mathemat-
ical operations occur: a linear combination of the outputs
of the previous layer weighted by the corresponding inter-
nodal weight matrix, and a non-linear mapping of the result
of this combination onto a subset of R. A generalized in-
put vector and weight matrix are given by Equations 7 and
8, the linear combination equation is given by Equation 9,
and an example nonlinear activation function is presented
in Equation 10.

X = [x1,x2, . . . ,xm]1×m (7)

W =


W11 W12 . . . W1n
W21 W22 . . . W2n

...
...

. . .
...

Wm1 Wm2 . . . Wmn


m×n

(8)

Σ : s = XW +b (9)

f (s) =
1

1+ e−s (10)

To train a network, a backpropagation algorithm is
used. The inter-nodal weights and biases are randomly ini-
tialized, and the algorithm feeds the input data into the net-
work. The output of the network is compared to the desired
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Figure 3. Mean velocity field in the upper mixing layer of
Mach 0.6 axisymmetric jet.

output, and the error (typically mean squared error in re-
gression problems) is calculated. The gradient of the cost
function with respect to each individual inter-nodal weight
and bias can be calculated, and in training, the weights and
biases can be nudged towards an optimum where the error
is minimized, as noted by Géron (2017). Computation time
can be reduced greatly if the gradients can be calculated ex-
plicitly. For this reason, the activation functions are easily
differentiable.

RESULTS
Velocity Field

The PIV window spans the full width of the jet in a
plane of symmetry between 4 and 5.75 nozzle diameters
from the nozzle exit plane. This window is upstream of the
point of potential core collapse. To simplify the estimation
problem and make comparisons to other work, we focused
only on the mixing layer on the upper side of the jet from
y/D = 0.1 - 0.8. The mean velocity field in this region is
illustrated in Figure 3. The contour plot is colored by the
magnitude of the measured two-component velocity vector
and overlaid with a subset of the average vectors.

The turbulent velocity fluctuations in this region are
decomposed using POD. Only the first five modes were uti-
lized in this study, accounting for approximately 32% of
the total turbulent kinetic energy in the flow. The POD re-
construction was truncated at five modes due to the dimin-
ished accuracy of the ANN and LSE models in predicting
the time-dependent POD coefficients associated with higher
order modes (illustrated in the following section). Addi-
tionally, since mode pairing is observed in these leading
modes, they can be used to qualitatively reconstruct large
scale structures convecting within the mixing layer as noted
by Taira et al. (2017).

“Virtual crosswire anemometers” measure the two-
component velocity vectors at five stream-wise locations.
These measurements were used as the unconditional events.
The virtual anemometers were spaced evenly between
x/D = 4.25 and 5.25, and are placed at the mean cross-
stream location corresponding to peak TKE production due
to cross-stream velocity gradients (Equation 11). This av-
erage cross stream location corresponds to y/D = 0.575.
Finally, the signals at these locations were were band-pass
filtered to improve model accuracy and consistency. They
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Table 1. Velocity Prediction Network Hyperparameters

Nodes 512

Train/Test Split 33/67

Batch Size 200

Training Epochs 150

Hidden Activations ELU

Kernel Initializer Random Normal

Objective Mean Squared Error

Optimizer Adam

Learning Rate 0.001

were filtered between 100 and 4000 Hz, effectively remov-
ing the lowest and highest frequency components. This was
an empirically driven decision, as it produced the best es-
timation results. The final ANN architecture is detailed in
Table .

S =−u′iv
′
j
∂Ui

∂x j
(11)

Field Estimation
Figure 4 illustrates the predictions made by the LSE

and ANN based formulations compared to the expected
values. Only modes one and five are presented here, as
they are illustrative of the upper and lower limits of this
method’s accuracy. The left column of Figure 4 compares
the time-domain predictions, while the right column com-
pares their power spectra. The predictions made by both the
LSE and ANN models are very similar when compared in
the time domain. In all cases, the predicted time series lie
nearly on top of one another. In modes one through three,
the large- and small-scale oscillations of the target signal
were estimated accurately from a qualitative perspective.
The amplitude of the predicted time-dependent coefficients
decreases greatly with increasing mode number. This is
observed most prominently in mode five, but is observed
clearly after mode three. Some oscillations in the time de-
pendent coefficient of mode five were predicted reasonably
well (small peak near t = 101ms). In modes four and five,
both methods under-predict the time-dependent coefficient
by nearly one standard deviation across the entirety of the
signal.

In the frequency domain, the discrepancies between the
measured and predicted signals are also clear. The spec-
tral trends were correctly predicted in general, however,
there are clear amplitude discrepancies across all modes
and all frequencies. In mode one (Figure 4, top right) the
low frequencies of the estimated coefficient were under-
predicted, while the mid-frequencies were slightly over-
predicted. Mode five coefficients were severely under-
predicted over the entire spectrum. The ANN based model
provides a slightly more accurate estimate than the LSE
model, however, the amplitude at each frequency is under-
predicted by approximately one order of magnitude. The

trend of deceasing accuracy with increasing mode number
is also observed in the modes not shown in this figure.

Figure 5 illustrates the ratio of mean square error
(MSE) between the estimated and expected time depen-
dent coefficients to quantify their relative performance. The
symbols are scaled by the inverse of the multiple correla-
tion value between the model inputs and outputs to illus-
trate the degree of non-linearity in their relationship. For all
modes estimated by both methods, the ratio of MSEANN to
MSELSE is below one. This indicates that the ANN model
outperforms the LSE model. The ANN model exhibits a 2%
decrease in error when estimating the time-dependent coef-
ficients of the first mode when compared to the LSE model.
On average, the error reduction is less than 1.5% over all
modes. In addition, there is not a clear relationship in the
degree of linearity between the variables and the relative
performance of the LSE and ANN models.

Figure 6 illustrates the reduced-order approximation of
the velocity field using the first five modes and the coeffi-
cients analytically calculated time-dependent POD coeffi-
cients. This is used as a point of comparison. This recon-
structed field is referred to as the baseline field going for-
ward. The results from the ANN and LSE models are illus-
trated in Figure 7. All reconstructed snapshots are spaced
0.1 ms apart in time to illustrate the temporal evolution of
the flow field. The baseline field exhibits alternating patches
of positive and negative velocity that convect downstream.
The regions of positive velocity in both the stream-wise and
cross-stream components appear to stretch as they convect
downstream. By identifying the center of these large pos-
itive and negative regions and tracking their motion in the
stream-wise direction, we observed that they travel at ap-
proximately 85 m/s on average. This corresponds to the av-
erage velocity in the mixing layer. This convective velocity
is also observed in the estimated fields.

The reconstructed fields in Figure 7 exhibit structure
that is qualitatively similar to that observed in Figure 6. The
alternating regions of positive and negative velocity are of
similar size shape to the baseline reconstruction. They were
also observed in nearly identical locations at each instant in
time. The convection and stretching of the positive velocity
region in this sequence was faithfully reproduced as well.
While the spatial structure of the reconstructions is simi-
lar, there was a clear magnitude discrepancy between the
baseline and estimated fields. Both reconstructions using
the estimated coefficients have similar magnitude, however.
The amplitude discrepancy between the estimated and cal-
culated reconstructions follows directly from the difference
observed in the time-dependent coefficients, particularly in
the higher mode numbers.

Spatial correlations between the estimated and analyti-
cally reconstructed fields are shown in Figure 8. The ANN
and LSE-based methods correlate best to the analytically re-
constructed field between y/D = 0.5 and 0.75 for both the
stream wise and cross-stream components. The largest dis-
crepancies are observed closer to the position of the core of
the jet, where the uncertainty in the data is highest. While
the ANN-based method performs slightly better than the
LSE-based method as evidenced by Figure 5, the differ-
ences between the estimated fields do not seem to be spa-
tially coherent.
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Figure 4. Comparison of LSE and ANN model predictions

Figure 5. Comparison of mean squared error between pre-
dictions from LSE and ANN models.

DISCUSSION
Stochastic estimation can be reformulated to take ad-

vantage of machine learning. In this analysis, we demon-
strated that a velocity field can be estimated using ve-
locity measured at spatially sparse locations using a neu-
ral network-based version of the Modified Complementary
Technique. This method was also compared to the Mod-
ified Complementary Technique implemented using a tra-
ditional LSE model. The ANN-based method exhibits a
slight improvement over the traditionally formulated LSE-
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Figure 6. Five mode reconstruction of the fluctuating ve-
locity field. Time increases from top to bottom. Left:
Stream-wise velocity component. Right: Cross-stream ve-
locity component.

based method. The improvement is on the order of 1.5%
and is consistent with previous findings of Tenney et al.
(2019). We also observed that the accuracy of the estimates
produced by both formulations declines with increasing
POD mode number. This suggests that more sophisticated
methods may be needed to estimate the higher-order coef-
ficients, or that the time-dependent coefficients associated
with these modes are simply non-deterministic in nature.
Finally, the reconstructed low-dimensional velocity fields
produced by both estimation methods are qualitatively sim-
ilar to the analytically calculated reduced-order fields. The
neural network-based method estimates the magnitude of
the fields slightly better than the LSE based method.

Several other aspects of this method should be studied
in the future. It has been shown that by including higher
order terms in the Stochastic Estimation formulation (such
as using a quadratic model), slight improvement in predic-
tion accuracy are shown. A comparison between the ANN-
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Figure 7. Five mode reconstruction of the fluctuating velocity field using the time-dependent coefficients estimated with the
ANN and LSE-based models. Time increases from top to bottom. Left subfigure: ANN-based model. Right subfigure: ANN-
based model.
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Figure 8. Spatial correlation between the estimated and
analytically reconstructed fields. Left: ANN, Right: LSE,
Top: stream-wise component, Bottom: Cross-stream com-
ponent.

based method and the higher-order Stochastic Estimation
model should be performed. Practically, the ANN based
methods can also be applied to control problems, such as
those studied by Pinier et al. (2007).

REFERENCES
Adrian, R.J. 1977 On the role of conditional averages in

turbulence theory. Symposium on Turbulence in Liquids .
Adrian, R.J. 1979 Conditional eddies in isotropic turbu-

lence. Physics of Fluids 22 (11), 2065–2070.
Adrian, R.J. & Moin, P. 1988 Stochastic estimation of or-

ganized turbulent structure: Homogeneous shear flow. J.
Fluid Mechanics 190, 531–559.

Berger, Z.P. 2014 The effects of active flow control on high-
speed jet flow physics and noise. PhD thesis, Syracuse
University.

Berger, Z.P., Shea, P.R., Berry, M.G., Noack, B.R., Gogi-
neni, S. & Glauser, M.N. 2015 Active flow control for
high speed jets with large window piv. Flow, Turbulence,
and Combustion 94, 97–123.

Bonnet, J.P., Cole, D.R., Delville, J., Glauser, M.N. & Ukei-
ley, L.S. 1994 Stochastic estimation and proper orthogo-
nal decomposition: Complimentary techniques for iden-
tifying structure. Experiments in Fluids 14, 307–314.

Bonnet, J.P., Delville, J., Glauser, M. N., Antonia, R. A.,
Bisset, D. K., Cole, D. R., Fiedler, H. E., Garem, J. H.,
Hilberg, D., Jeong, J., Kevlahan, N. K. R., Ukeiley, L. S.
& Vincendeau, E. 1998 Collaborative testing of eddy
structure identification methods in free turbulent shear
flows. Experiments in Fluids 25, 197–225.

Cybenko, G. 1989 Approximations by superpositions of
sigmoidal functions. Mathematics of Control, Signals,
and Systems 2, 303–314.

Delville, J. 1994 La decomposition orthogonale aux valeurs
propres et l’analyse de l’organisation tridimensionelle
des ecoulements turbulents cisailles libres. PhD thesis,
l’Universite de Poitiers.
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