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ABSTRACT

The effect of surface roughness on the stability char-
acteristics at transonic conditions is investigated using the
parabolized stability equations (PSE). The PSE numerical
framework is formulated in curvilinear coordinates and the
base flow is computed directly from the laminar compress-
ible Navier-Stokes equations. The effect of surface rough-
ness is directly tied to the local boundary layer characteris-
tics of the flow. These PSE-generated results are validated
against a high-order Direct Numerical Simulation (DNS) of
roughness-induced transition. We also demonstrate that the
PSE are sufficiently accurate to be used in combination with
more sophisticated approaches (DNS, DES or LES) in or-
der to reduce the computation time including in complex
flow situations featuring compressibility and boundary cur-
vature.

INTRODUCTION

For aircraft manufacturers, friction is the sinew of war;
delaying laminar-to-turbulent transition—even over a short
distance—can lead to significant drag reduction and, thus,
performance improvements. Transition is greatly affected
by the presence of dents and dimples resulting from hinge
lines or rivet heads on the skin surface. For this reason,
it is often necessary to modify the design by moving these
geometric features further downstream in order to extend
the laminar region of the flow. For instance, the engine
nacelle and inlet lip have to be machined separately in or-
der to assure that the hinge line does not induce a prema-
ture transition to turbulence. Due to the complexity of the
flow on a nacelle, which include effects due to compress-
ibility, pressure gradients, and cross-flow induced transi-
tion, most Reynolds Averaged Navier-Stokes (RANS) tran-
sition models fail to accurately predict the transition line—
especially in the presence of surface imperfections. To this
end, we present a numerical framework based on the Parab-
olized Stability Equations (PSE) to study the roughness-

induced transition in transonic flows over complex geome-
tries. From a design perspective, (Campbell & Lynde, 2017)
demonstrated that the linear stability theory (LST) and PSE
accounted for a sufficiently high level of physic (compress-
ibility, curvature, etc.) to be incorporated into a preliminary
natural laminar flow design method (NLF).

There are typically two families of modal-stability-
based transition models: local and nonlocal methods. The
local stability analysis is carried at a specific position in
the flow, by opposition to the nonlocal approach that take
into account the evolution of perturbations along their path
(Juniper et al., 2014). Traditionally, the local approaches,
such as the Linear Stability Theory (LST), of which the
Orr-Sommerfeld equations (OSE) is most well-known, per-
form particularly well in incompressible flows over simple
geometries. However, in realistic aeronautical flows, com-
pressibility, pressure gradients, cross-flow and roughness
effects promote premature transition and are no longer neg-
ligible. For this reason, nonlocal approaches, such as the
Parabolized Stability Equations (PSE), have received con-
siderable attention in the last decades. Hall (1983) was the
first to study the evolution of Tollmien-Schlichting (T-S)
waves through a set of parabolized stability equations. Itoh
(1981) and Bertolotti (1990) extended PSE to account for
the nonlinear interaction between a subset of eigenmodes.
More recently, Kuehl ez al. (2012) and Moyes et al. (2017)
used the Nonlinear PSE (NPSE) approach to study the sec-
ondary instability of cross-flow in hypersonic conditions.
Lozano-Duréan et al. (2018) showed that NPSE are suffi-
ciently accurate to be used as inflow boundary conditions
for Direct Numerical Simulation (DNS) or Large Eddy Sim-
ulation (LES). In this way, it is possible to significantly
reduce the size of the computation domain by modelling
the pre-transitional region using a simple boundary condi-
tion supplied from the NPSE. Their work focused on an in-
compressible zero-pressure gradient boundary layer, with-
out any curvature, roughness or compressibility effects.

The effect of distributed roughness on the transitional
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characteristics of compressible boundary layer was recently
investigated by (Suryanarayanan et al., 2017) who revis-
ited the concept of roughness-shielding to reduce the re-
ceptivity of large amplitude discrete roughness elements.
Using an hybrid DNS-experimental approach, they found
that the use of continuous flat roughness strips either up-
stream or downstream of surface imperfections had a ben-
eficial effect on transition control. More recently, (Mon-
tero & Pinna, 2018) and (Hein et al., 2018) investigated the
effect of three-dimensional discrete roughness elements on
hypersonic flows using different approaches; Montero fo-
cused on a modal stability theory while Hein used a non-
modal approach.

In the present paper, we develop a framework to solve
the Parabolized Stability Equations for roughness induced
transition in transonic flows. The PSE framework is in-
tended as an initial design tool which accounts for surface
imperfections. A validation of the transitional predictions is
made with a Direct Numerical Simulation of the equivalent
setup; which allows for a direct assessment of this predic-
tive tool.

NUMERICAL CONSIDERATIONS

The modal stability theory is a branch of fluid me-
chanics that was initially developed to study the evolu-
tion of small amplitude perturbations within a variety of
flows. It relies on the decomposition of the flow quanti-
ties into a steady part g and an unsteady part ¢’ such that:
q(%,t) = g(¥) +4'(¥,t). All modal-stability based models
rely on the assumption that the perturbation vector ¢’ takes
the following form: ¢'(%,1) = ¢(¥)x(%,t), where § and ¥
are the amplitude and phase functions. Depending on the
chosen approach (LST, PSE, NPSE, BiGlobal, etc.), § and
x will have different definitions. In the case of the Linear
PSE, we assume the following:

q =g(x,y)exp {/Oxi(x(x)dx—i—iﬁz— iot (1)

where o, B and @ are the stream-wise, span-wise and
temporal wavenumbers.

In the present work, we propose a model based on the
dimensionless laminar compressible Navier-Stokes equa-
tions in their non-conservative form. In theory, the base
flow (g) does not depend on ¢’ and the origin of g has lit-
tle importance; one could choose to use a standalone CFD
solver, interpolate the velocity field from experimental data
or simply solve a set of self-similar equations (Blasius,
Falkner-Skan-Cooke, etc.). However, as the PSE are de-
rived directly from the non-conservative governing equa-
tions (2a)-(2c), we chose to compute the base flow directly
from these same equations for numerical consistency.
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The laminar base flow as well as the stability equa-
tions are solved using an hybrid approach by combining
two types of numerical schemes. In the wall-normal di-
rection, we use a spectral-collocation-based method to ac-
count for the steepest gradient of the solution. In the stream-
wise direction, we use a central sixth-order finite-difference
scheme which is better adapted for complex geometries
than spectral collocations methods.

The spectral collocation method is well suited for the
PSE approach and has been used by several other authors
(Shen et al., 2011; Bertolotti, 1992; Thomas et al., 2017).
The main idea is to expand the solution in terms of global
basis functions so that the numerical solution satisfies the
PDE at the so-called collocation points, or also named
Chebyshev Gauss-Lobatto points (Hussaini et al., 1989),

defined as: &; = cos % In the present case however, to
accurately capture the physic of the problem in the vicinity
of the wall using a standard spectral collocation method,
one would have to increase the polynomial order in the
range of 100-200. At sufficiently high polynomial orders (in
our experience around 200), the problem become poorly-
conditioned and numerical error begins to propagate within
the solution. To correct this behaviour, we use a multi-
element spectral-collocation method consisting of multiple
lower order collocation sub-domains. In this way, the prob-
lem can be elegantly discretized using the following differ-

entiation matrices:
P=2-9 3)

where @; is the standard spectral differentiation matrix for
the i’ sub-domain. In practice, this method is more ro-
bust, but also more efficient than standard collocation meth-
ods as the resulting differentiation matrix allows the use of
sparse matrices and optimized sparse solvers such as In-
tel MKL Pardiso. We typically use eight twentieth-order
sub-domains with a stronger nodes concentration at the wall
which results in a sparsity index in the range of 0.875.

Using equation (3) and Backward Differentiation For-
mulas (BDF), the LPSE system can be written has:

1. 1
L+@P+@2S—EA—X Gi =—E5-di-1 )

where ¢ = [i,9,%,p,T]T, 2 is the differentiation matrix
and the matrices L, P, S and E depend on the base flow and
the wavenumbers only.

The stream-wise wave number o is x-dependant in
PSE. An additional equation must then be added to close
the system: this is the normalization condition (also called
auxiliary condition) Juniper et al. (2014). The role of the
normalization condition is to transfer energy from the am-
plitude function to the phase function such that dy,g ~
O(Rez?).
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The equations have been parabolized as we eliminated the
second x-derivatives of §. However, there is still some ellip-
ticity present in the system, mostly due to the reverse prop-
agation due to the pressure terms. The problem arises when
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the step size become smaller than ‘71,‘Li & Malik (1997).
There are multiple ways to alleviate this constraint. The
simplest way is to define a minimal lower bound on the
marching step size. In practice, it is not always possible
as complex geometries may require a smaller step size to
accurately represent sharp edges. Alternatively, as shown
by Li & Malik (1997), we can drop the %E terms, in which
case, the step size restriction is relaxed but not eliminated.
Finally, it is also possible to add a stabilizing term to the
system. For the first-order Euler scheme, the following ex-
pression can be derived:

. aq g
Litnt 5t = -5 ©)
Once discretized:
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where (L is defined as max(]a%[ —20x,0) and has the same
order of magnitude as the truncation error associated with
the first-order backward differentiation scheme. In other
words, the final solution is not impacted by the stabilizing
term.

RESULTS and DISCUSSIONS

In this section, we first conduct an analysis on a tran-
sitional subsonic boundary-layer using a modal stability
approach (LPSE) as a baseline case. A representative
roughness-induced transition case is then proposed and in-
vestigated using both PSE and DNS.

PSE results

As the linear PSE neglects all the non-linear coupling
terms, the exact transition location must be estimated. The
eV method is widely used in acrodynamic design. Based
on empirical measurements, colossal efforts have been de-
ployed by the industry to collect the experimental data
needed for the N-factor correlations Herbert (1997). By in-
tegrating the growth rate along the stream-wise direction, it
is possible to obtain the n-factor defined as:

"X,

n-factor = — / i()'dx (8)

X0

The n-factor can be seen as a mode-specific measure of the
disturbance amplification along the stream path. It should
however be noted that the n-factor is a function of the tem-
poral wavenumber (®@); thus, it can not be directly corre-
lated to the transition position. To remove this ambiguity,
Ingen (1956) defined the N-factor corresponding to the en-
velope of the n-factor curves (see figure 5). Ingen (2008)
correlated the following critical N-factors for the begin-
ning and end of transition in an incompressible flat plate
boundary-layer as a function of the free-stream turbulence
intensity. The beginning and end of transition are respec-
tively: N

p=2.13—6.1810g;((Tu) (9a)
Ng = 5.00— 6.1810g,o(Tu) (9b)

It has been shown that the use of compressible linear sta-
bility theory to compute critical N-factors leads to larger
scatter, then in the case of incompressible linear stability
theory. However, Risius et al. (2018) found that this is gen-
erally not the case and that compressible critical N-factors,
once corrected for the influence of the external disturbance
spectrum, show a better correlation.

A zero-pressure gradient, smooth flat plate transitional
boundary layer is investigated using the developed parab-
olized stability framework. A first case is investigated at
the incompressible limit, given the well-studied nature of
the incompressible boundary layer, as a validation of the
framework. The neutral stability curve computed from PSE
slightly underestimates the experimental stability bounds
but collapses well with published DNS data as shown in
Figure 1.
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Figure 1. Neutral stability curve for an incompressible
ZPG flat plate boundary layer, Reg = \/Ux/Vv
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Figure 2. Velocity contour plot from the laminar solver;
the boundary layer thickness & g9 is shown as a solid line.
The y-axis is expanded for increased visibility of the rough-
ness elements. The x-axis is not linear as the Reynolds num-
ber is based on the boundary layer thickness. The height
of the roughness array corresponds to ~ 0.168) 99. Where
80.99 is evaluated at the inlet.
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Figure 3. Maximum growth rate vs dimensionless fre-
quency, for a compressible ZPG flat plate. Ma = 0.7,
Reg, =300, Bt = 1

A roughness-induced transition of a compressible zero-
pressure-gradient flat plate boundary layer at Mach 0.7 is
investigated using the PSE framework. The setup consists
of a flat plate to which we have added a roughness array
of 10 successive sinusoidal humps (see figure 2). The in-

udy

let Reynolds number, Res, = 52, is set to 300 based on

a length scale which is proportional to the inlet boundary
layer thickness, where § =  / **. The dimensionless height

of the roughness array is approximately 16% of the inlet
boundary layer thickness such that the roughness elements
do not trigger a transition to turbulence, they instead cause
a precocious transition downstream of the roughness array.
To this end, the roughness array begins at x/§ = 833 and
extends up to x/dy = 2133; this corresponds to a range from
Res =500 to 800. We determined the location of the rough-
ness array based on the maximum growth rate of the most
unstable mode (in the smooth configuration). The most
unstable mode was determined by sweeping the frequency
spectrum and finding the temporal frequency leading to the
highest growth rate (see figure 3). The growth rate was com-
puted using the LPSE approach from equation (10).

6= —Im(at) + % [ln (\/E_k)] (10)
Ec= [P (1 + 192 + o)y )

The neutral stability stability and N-factor curves of the
roughness-induced transition are shown in figures 4 and 5,
respectively. Two important observations are noted. First,
the bounds of neutral stability are greatly increased, partic-
ularly around the roughness elements. Second, the growth
of the instability modes are greatly enhanced compared to
the smooth configuration.

DNS results

A DNS of the roughness-induced transitional config-
uration was conducted using the Nektar++ compressible
solver Cantwell ef al. (2015). For inflow boundary condi-
tion, we used a self-similar compressible Blasius profile to
which we superimposed T-S waves with a prescribed ampli-
tude. Since the T-S waves are computed from the linear sta-
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Figure 4. Neutral stability curve of roughness-induced
transition at Ma = 0.7.
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Figure 5. N-factor for the compressible boundary layer
Ma=0.7)

bility theory, only the relative scaling between u’,v',w', T’
and p’ has a physical meaning, the solution must thus be
scaled to reflect the case of interest. In the present case, we
impose a 0.6% turbulence intensity (Tu[%]) at the inlet:

u' 1

Tu[%] = =
Uref Uref

Where 1/, v/ and w' are the root mean square (RMS) fluc-
tuating velocities. In the modal stability theory, the fluctu-
ating flow is a sum of sinusoidal-type modes with a RMS
amplitude given by :

i = Vilmas (13)

V2

The scaling factor applied to g is thus chosen such that the
Tu|%] = 0.6% (see figure 6).

1 nY 5|2 |2
Tu[%] = 0.006 = _\/‘u|max + |v|max + ‘Wlmax (14)
Uref V6 6 6

For the remaining boundary conditions, we use a pres-
sure outflow and the laminar solution in the free-stream.
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Figure 6. Perturbation vectors at Res = 300 computed
from the compressible Linear Stability Theory (LST). The
amplitude of the vector is chosen such that Tu[%] = 0.6%

The wall is kept at a constant temperature Lﬁ“ =1 as
for the PSE case. The grid converged solution required
1600 x 640 x 32 degrees-of-freedom using a 3rd order poly-
nomial. The near wall resolution was maintained below
vyt =0.1. The streamwise resolution of the roughness el-
ements was ~ 460.

The process leading to the onset of turbulence gener-
ally occurs gradually over a relatively short distance; esti-
mating a precise transition location is thus incoherent with
the physical process. For instance, using the skin friction
coefficient, the beginning and end of transition are usually
assumed to be bounded by the local minimum and maxi-
mum wall shear stress respectively. As shown on the figure
7, the skin friction coefficient obtained by adding the time-
averaged contribution of the primary disturbance mode to
the laminar flow agrees well with the DNS results until tran-
sition is triggered. According to equations (9a) and (9b)
and referring to figure 5, the transition process should begin
slightly after Reg = 1000 (based on the correlated N-factor
of transition onset). According to the DNS results, the tran-
sition begins slightly before Res = 1000 which is surpris-
ingly accurate considering that the critical N-factors were
correlated for a perfectly smooth incompressible flat plate
boundary-layer; the stabilizing effect of compressibility is
to decrease the N-factor curves’ amplitude rather than the
critical N-factor values.

0.00251 —— Laminar

0.0020 |
S 0.00151

0.0010

0.0005 1

400 600 800 1000 1200
Res

Figure 7.  Skin friction coefficient obtained from the Lam-
inar solver compared against Direct Numerical Simulations
(DNS)
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Figure 8. momentum and energy profiles downstream of
the roughness array (Regs = 850) at t = 7461

Figures 8 show a comparison of the instantaneous
stream-wise/wall-normal momentum and energy profiles
immediately after the roughness array. The linear PSE
seems to adequately predict the evolution of the perturba-
tion vectors even in presence of moderate surface rough-
ness. The discrepancy observed in the free-stream wall-
normal momentum can be tied to slight differences in the
boundary conditions used in the laminar and LPSE solver
compared to the DNS solver. First, the laminar and LPSE
models are solved in a boundary-fitted coordinates and in-
stead of using a pressure outflow boundary condition in the
free-stream, we simply set the normal derivative to zero.
Another significant difference is the viscosity model. In the
laminar and LPSE solvers, we assume a variable viscosity
based on the Sutherland’s law while the DNS solver uses
a constant viscosity assumption. Nonetheless, the cumula-
tive effect of the roughness array on the flow stability was
adequately predicted using the LPSE. Following the work
of Lozano (Lozano-Duran et al., 2018), it seems to be pos-
sible to replace the flow section containing the roughness
elements by a simple time dependent Dirichlet boundary
condition which could lead to significant CPU saving. To
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provide an order of magnitude, the DNS took several days
using 1600 CPUs on a high-performance computing cluster
while the laminar and LPSE results were generated in just a
few hours using 4 cores on a standard laptop.

CONCLUSION

Numerical studies of a compressible boundary-layer in
anormal transition scenario (T-S waves) were conducted us-
ing both the Linear Parabolized Stability Equations (LPSE)
and Direct Numerical Simulations (DNS). The transition
prediction obtained from the classical ¢V method agreed
surprisingly well with the DNS, considering the fact that we
used the incompressible critical N-factor. The momentum
and energy profiles downstream of the roughness array pre-
dicted by the LPSE were in good agreement with the DNS,
indicating that it could be used as time-dependent boundary
condition for DNS, DES or LES in order to reduce the size
of the computational domain.
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