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ABSTRACT
High-frequency forcing is applied with an array of syn-

thetic jet actuators to manipulate the large and small scale
motions in the wake of a blunt trailing edge profiled body
at Re = 2500. Forcing causes an increase in the energy of
the random motions in the shear layer, a higher dissipation
rate of turbulent kinetic energy, and attenuates the coherent
large scale velocity fluctuations. The reduced strength of
the shear layers under forced conditions is linked to a signif-
icantly weaker vortex street in a plane closely aligned to the
centerline of the jets. The coupling between the small scales
that are acted upon by the forcing and the large scales of the
flow is investigated using a generalized scale-by-scale en-
ergy balance with the Kármán-Howarth-Monin-Hill equa-
tion. This shows that the turbulence cascade is significantly
altered by the high-frequency forcing, accelerating the in-
terscale cascade from large to small scales in the shear layer,
and diminishing inverse cascading behavior at large scales
along the wake centerline.

INTRODUCTION
Manipulation of the separated shear layers of a bluff

body can have a considerable effect on the resulting large
scale vortical structures that develop in the wake and con-
sequently reduce the drag. One methodology to effectively
control the evolution of a shear layer is to excite it at the
most receptive frequencies of coherent structures (Ho &
Huerre, 1984). This type of periodic forcing typically in-
volves the generation of relatively large scale vortices which
can increase the rate of entrainment in the shear layer (Dan-
dois et al., 2007). If this approach is applied to a flow with
a global instability such as a vortex street, there is a risk
in amplifying the instability or triggering other instability
modes. An alternate approach to control the large scales
of a flow is to introduce small scale vortices which are de-
coupled from the dominant base flow instabilities. With
this methodology, the forcing can reduce the amplitude of
the velocity fluctuations by increasing the dissipation, sta-
bilizing the shear layer and reducing the entrainment rate
(Vukasinovic et al., 2010; Cain et al., 2001). Wiltse &
Glezer (1998) further observed that actuation at the small
scales of a free shear layer caused significant modifica-
tions to the overall energy cascade, amplifying the high fre-
quency content and diminishing the low frequency energy,
which they associated with an acceleration of the energy

transfer from the large to small scales. The effectiveness of
high-frequency forcing has been demonstrated in flow con-
trol applications such as the wake of an axisymmetric bluff
body by Oxlade et al. (2015), who measured a base pres-
sure recovery of 35% due to the reduced entrainment from
the weaker forced shear layers, and separation control on
an airfoil by Glezer et al. (2005), who observed a drop in
coherent flow oscillations.

The present study further investigates the effect of
high-frequency forcing on the large and small scales in the
wake of a blunt trailing edge (BTE) profiled body. In order
to investigate the effect on the energy cascade, the Kármán-
Horwarth-Monin-Hill (KHMH) equation is employed (Hill,
2002). The KHMH equation describes the generalized
scale-by-scale energy budget for the second order struc-
ture function 〈δq2〉 = 〈δuiδui〉, where δui = u+i − u−i is
the fluctuating velocity difference between x+i = xi +~ri/2
and x−i = xi−~ri/2, xi refers to a point in physical space and
~ri is a vector denoting an orientation and separation in scale
space. Adopting the notation of Portela et al. (2017), the
KHMH equation is given by
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where the terms are represented symbolically as

At =−A −Π−ΠU +P +Tu +Tp +Dx +Dr− εr

describing advection (A ), nonlinear interscale energy
transfer (Π), linear interscale energy transfer (ΠU ), produc-
tion (P), transport from turbulent fluctuations (Tu), trans-
port from velocity/pressure correlations (Tp), diffusion in
physical and scale space (Dx,Dr), and the dissipation rate
(εr).
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METHODOLOGY
The wake of a blunt trailing edge (BTE) model of

thickness d = 25.4 mm, shown in Figure 1, is experimen-
tally examined. The model was installed inside an open-
circuit suction tunnel with a cross-section of 0.3 m by 0.3 m
and a fixed Re of 2500 was considered, generating a lami-
nar boundary layer with a momentum thickness θ = 0.038d
at the trailing edge. High-frequency forcing was provided
by an array of piezoelectric-driven synthetic jets. The jets
used in the experiments feature rectangular slot exits 1.2d
long with aspect ratios of 38, and are oriented spanwise rel-
ative to the crossflow. They are located on both sides of
the BTE body (c/d = 12.9), 1.05d upstream of the trail-
ing edge, and are spaced apart by 2.4d. This matches the
spanwise wavelength of the Mode B’ secondary instability
of the vortex street, as identified by Naghib-Lahouti et al.
(2014). The jets were individually calibrated by measur-
ing their output velocity at the slot exit plane with a hot
wire in the absence of a crossflow. The forcing amplitude
of the synthetic jets was assessed with the velocity ratio,

R =
1

T/2

∫ T/2

0
u j(t)dt/u∞, where T is the cycle period, u j(t)

is the measured jet velocity, and the integral was only eval-
uated over the blowing stroke. The effect of forcing at
R = 6.2 and R = 8 will be examined in this paper. These
cases were selected because R= 6.2 is around the maximum
forcing amplitude at this Re for which the vortical structures
emitted by the jets remained inside the boundary layer. The
jets were operated at a frequency of 2000 Hz, which is an
order of magnitude above the shedding and shear layer in-
stability frequencies.

Figure 1: Schematic of the blunt trailing edge model
and the field of view of the x-y PIV plane.

The velocity field in the x-y plane, spanwise offset by
z = 0.08d from the centerline of a jet, was measured using
stereo-PIV. The PIV setup consisted of a 1 mm thick laser
sheet formed from a dual-pulse Nd-YAG laser, and two Lav-
ision sCMOS cameras positioned roughly symmetrically at
40◦ angles on opposite sides of the wind tunnel. Both cam-
eras had 60 mm focal length lenses. The field of view ex-
tended from 0.55d < x < 6d and −2d < y < 2d. For ev-
ery case 1560 random snapshots were taken at a frequency
of approximately 2 Hz. The snapshots were processed us-
ing Lavision Davis 8.3.x software with a window size of
16x16 pixels and 50% overlap, resulting in a vector spacing
of 0.02d. The Kolomogorov lengthscale η = (ν3/ε)1/4, es-
timated by computing the mean dissipation rate of TKE ε ,
is about 0.01d in the near wake, suggesting that this vector
spacing is sufficient to resolve the small scales of the flow
at this Re (Lavoie et al., 2007).

In its complete form ε can be calculated from the 9
velocity gradients from all spatial directions:

ε =−ν
∂ui

∂x j
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With stereo-PIV in the x-y plane, only 6 of the fluctuating
velocity gradients are directly measurable: ∂u/∂x, ∂v/∂x,
∂w/∂x, ∂u/∂y, ∂v/∂y, and ∂w/∂y. The remaining 3 ve-
locity gradients are approximated using an isotropic as-
sumption, namely, ∂u/∂ z ≈ ∂u/∂y, ∂v/∂ z ≈ ∂v/∂y, and
∂w/∂ z≈ 0.5(∂u/∂x+∂v/∂y).

Hot-wire measurements were taken using a Dantec
StreamLine constant-temperature anemometer, sampled at
25 kHz and low pass filtered at 10 kHz for a typical sam-
pling time of 60 s. The hot-wires were custom-made on a
Dantec probe with 5 µm thick tungsten wire to have a sens-
ing length of about 1 mm.

RESULTS AND DISCUSSION
High-frequency forcing can significantly modify how

the spectral energy is distributed in a flow. The effect of
forcing on the velocity spectra at {x = 0.2d,y = 0.53d} is
shown in Figure 2. In the unforced case, the dominant fre-
quency component is at f d/u∞ = 0.25, corresponding to the
vortex shedding instability. Higher order harmonics of the
shedding frequency, as well as the shear layer instability fre-
quency at f d/u∞ = 1.34 are also evident. With both levels
of forcing, these spectral peaks are completely suppressed
at this measurement location, but the energy throughout
the entire spectra is increased except at the instability fre-
quency, resulting in an overall increase in the velocity fluc-
tuations. In the forced spectra, the peak at the forcing fre-
quency is higher than any other frequency component. A
clear peak at the forcing frequency can be identified in the
velocity spectra throughout the near wake region, presum-
ably because of the advection of the vortices generated by
the jets into the wake as well as acoustic-related coupling
effects. Interestingly, at {x = 0.2d,y = 0.53d} the forcing
frequency peak is greater for the R = 6.2 case compared to
the R = 8 case, which may be linked to the higher penetra-
tion of the jet into the freestream in the higher forcing am-
plitude case. Additionally, while the energy at intermediate
scales is very similar at R = 6.2 and R = 8, the low frequen-
cies are amplified more for R = 8. The amplification of the
incoherent low frequency energy content by high-frequency
forcing in the present study stands in contrast to previous
studies such as Wiltse & Glezer (1998) and Vukasinovic
et al. (2010), which report a diminution of large scale en-
ergy from the forcing of free shear layers and backward
facing step flows, respectively. This discrepancy may be
because in the aforementioned studies the unforced shear
layer was fully turbulent and did not feature a global insta-
bility. However, the attenuation of the shedding instability
in the present study is still indicative of a coupling between
the small scales that are acted upon by the forcing and the
large scale features of the wake.

In order to examine the effect of forcing of the small-
scales on the large scale vortex street, a triple decomposi-
tion of the total wake velocity field in the x-y plane was
employed to isolate the mean, the vortex shedding induced
periodic fluctuations, and the random fluctuations. In this
study, the reference for the shedding cycle was obtained us-
ing the snapshot proper orthogonal decomposition (POD)
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Figure 2: Velocity PSD at {x = 0.2d,y = 0.53d} un-
forced and with forcing at R = 6.2 and R = 8.

based method of van Oudheusen et al. (2005) rather than
from a time-resolved reference signal. The snapshots were
sorted into 18 phase bins, which translates to roughly 85
snapshots per bin. Conditionally averaged statistics with re-
spect to the vortex shedding phase are denoted with a tilde.

The spanwise vorticity fields at a selected phase for
the unforced, and the R = 6.2 and R = 8 forcing cases in
the z = 0.08d plane are presented in Figure 3. In the un-
forced case, a well-organized vortex street originating from
the separated shear layers is revealed. In the forced cases,
the shear layers are more spread across both the base and
freestream side of the flow due to the upwash of low mo-
mentum fluid in this plane. In the R = 8 case in particular,
where the jet fully penetrates the boundary layer and the
flow reverses downstream of the jet slot, two distinct re-
gions in the shear layer are created: an inner region with
a comparatively greater velocity gradient, and an outer re-
gion with a much lower velocity gradient where the velocity
reaches the freestream. As a result, extra inflection points in
the velocity profile are created which may have the potential
to trigger additional instabilities in the flow. To measure the
length scale of the (mean) shear layer, the integral thickness,
θ , was computed as

θ =
∫ U−Umin

Umax−Umin

(
1− U−Umin

Umax−Umin

)
dy (3)

where Umax and Umin are the maximum and minimum
mean velocities across the shear layer. At the upstream edge
of the PIV measurement window (x = 0.55d), θ = 0.066d
without forcing, and increases to 0.075d for R = 6.2 and
0.14d for R = 8 (with respect to the upper shear layer). The
thickening of the shear layers and the corresponding reduc-
tion in the intensity of the spanwise vorticity inside them
inhibits their interaction, resulting in weaker vortex shed-
ding. In particular, at x = 4d the circulation contained in-
side the shed vortices is about 60% of the unforced value for
the R = 6.2 case and 50% for the R = 8 case. The reduced
strength and more diffuse organization of the shed vortices
under forced conditions is clearly evident in Figure 3, and is
consistent with the diminished peak in the velocity PSD at
the shedding frequency. In the R = 8 case, the shed vortices
are weaker than in the R = 6.2 case because they initially
form from only the inner part of the shear layers, effectively
reducing the available circulation flux. However, by x≈ 3d
the outer shear layers start to move towards the wake cen-
terline and the fluid is entrained into the the von Kármán

vortices, causing the vortices to grow. Further increasing R
shifts this entrainment farther downstream, but even at R as
high as 10.5, the vortex street is never entirely decimated
with the present forcing strategy, and the resulting increase
in the width of the wake at these relatively high forcing am-
plitudes mitigates the drag reduction.

(a)

(b)

(c)

Figure 3: Phase averaged spanwise vorticity in the z =
0.08d plane. (a) Unforced, (b) R = 6.2, (c) R = 8.

As suggested by the velocity PSD shown in Figure 2,
high-frequency forcing and the corresponding attenuation
of the vortex street effect also impacts the turbulent prop-
erties of the wake. The turbulent kinetic energy (TKE),
k = 0.5(uu+vv+ww), in the wake with and without forcing
is plotted in Figure 4. In the forced wake, the induced flow
from the jets causes a significant initial increase in the TKE
inside and at the freestream side of the shear layers, which is
followed by a damping of the TKE downstream. An initial
increase of TKE followed by a drop to below the unforced
level using high-frequency forcing was previously reported
by Dandois et al. (2007) and Vukasinovic et al. (2010). In
the present case, the drop in the total TKE is due to the re-
duction in the coherent vortex shedding component, which
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is evident from the triple decomposition of the velocity fluc-
tuations but is not shown explicitly here for brevity. In both
the forcing cases, the coherent component of the velocity
fluctuations in the shear layers is diminished to a similar
extent, but in the R = 8 case, the random fluctuations are
approximately double the R = 6.2 case at x = 0.55d. As
a result, the point at which the total TKE drops below the
unforced level occurs farther downstream, x = 0.85d, com-
pared to x = 0.65d. Furthermore, the triple decomposition
of the velocity fluctuations shows that the decrease in the to-
tal TKE along the wake centerline in both the forced cases
is also because of the vortex street attenuation, and that the
random component of the fluctuations is actually increased.
This observation is in line with an accelerated transfer of
energy from the large scale wake instability to the smaller
scales by high-frequency forcing. Since the dissipation rate
in a flow is proportional to the frequency squared, it may
also be expected that the increase in the energy at high fre-
quencies by forcing will be associated with enhanced dissi-
pation of TKE.

(a)

(b)

(c)

Figure 4: TKE in the z = 0.08d plane. (a) Unforced,
(b) R = 6.2, (c) R = 8.

The importance of the mean turbulence dissipation
rate, ε , to the changes in the TKE distribution with high-
frequency forcing has previously been emphasized in stud-
ies such as Wiltse & Glezer (1998), Glezer et al. (2005)
and Vukasinovic et al. (2010). Figure 5 presents ε in the
z = 0.08d plane with and without forcing. Without forcing,
ε peaks near the end of the vortex formation region, roughly
corresponding to the location where the shear layers roll up
into the vortex street. Due to the high-frequency forcing ε

is about 3 times greater in this region, coinciding with the
decreased overall TKE and increased random (small scale)
energy. The dissipation is also significantly higher through-
out the forced shear layers due to the advection of the small
scale vortices generated by the forcing into the wake along
and around the freestream side of the shear layers. Fur-
thermore, because the random fluctuations are greater in the
R= 8 case compared to at R= 6.2, ε is also correspondingly
larger. The advection of the small scale vortices emitted
by the jets from the shear layers into the shed von Kármán
vortices suggests that the small scales may be linked to the
evolution of the large scale wake features.

(a)

(b)

(c)

Figure 5: The mean dissipation rate of TKE in the z =
0.08d plane. (a) Unforced, (b) R = 6.2, (c) R = 8.
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In order to better understand the coupling between the
large and small scale structures in the wake under high-
frequency forcing, the energy cascade is examined using
Equation 1. We are restricting our attention here to the
unforced and R = 6.2 case for simplicity. Structure func-
tion terms that could not be directly calculated from the x-
y plane stereo-PIV measurements were estimated using an
isotropic assumption (for the fluctuating velocity difference
terms) similarly to the dissipation in Equation (2), and mean
velocity differences in the z direction were neglected. The
pressure transport term in Equation 1 was calculated from
the remainder of the other terms in the scale-by-scale en-
ergy budget, similarly to Gomes-Fernandes et al. (2015).
The calculated quantities at a particular location in physical
space, {x,y,z}, were interpolated onto a cylindrical coor-
dinate system in the x-y plane in scale space, which is a
function of the scale, ri, and angle, φ . The reader is encour-
aged to refer to Gomes-Fernandes et al. (2015) and Portela
et al. (2017) for a more complete discussion on the individ-
ual terms in Equation 1 and the assumptions involved in
evaluating them from planar PIV.

While a full analysis of every term in Equation 1 is
beyond the scope of this paper, we choose to focus on
the net interscale energy transfer, (−Π−ΠU ), to analyze
the effect of forcing on the coupling between the large
and small scales. The distribution of the sum of these
terms, normalized by the dissipation in scale space at {x =
1.1d,y = 0.5d,z = 0.08d} with and without forcing is plot-
ted in Figure 6. This location is the most upstream point
in the shear layer for which the energy transfer at scales
up to 1d can be computed. A region of positive (negative)
(−Π−ΠU ) is indicative of a forward (inverse) cascade be-
havior. In a classical Kolmogorov cascade, the interscale
energy transfer would be equal to the dissipation rate over a
wide range of scales. However, in both the unforced and
forced cases at {x = 1.1d,y = 0.5d,z = 0.08d}, the dis-
tributions of (−Π−ΠU ) are highly anisotropic and strat-
ified along the r2 axis. Additionally, in both cases there
is a combination of forward and inverse cascade behaviors
at different orientations. To determine the net direction of
the energy cascade between scales, the orientation average
(in the measured plane) of the terms in Equation 1 was cal-
culated, as in, for example Πa(r) = (1/2π)

∫ 2π

0 Π(r,φ)dφ .
The orientation-averaged scale-by-scale energy budget at
{x = 1.1d,y = 0.5d,z = 0.08d} can be constructed by eval-
uating the other terms in Equation 1, resulting in Figure 7.
The dashed black line corresponds to the sum of the plot-
ted terms, and always equals 1 because Tp was calculated
from the difference of the other terms. Without forcing, at
this location in the shear layer the energy budget reveals
that the production and advection terms dominate the large
scale behavior, and from about 0.1d < ri < 0.6d there is a
net inverse cascading behavior. Forcing alters the cascade
at this location, reducing the relative importance of advec-
tion in the scale-by-scale energy budget and leading to an
overall forward cascading behavior across all scales. This
is consistent with the breakdown of the large scale vortex
shedding structure to smaller scales by forcing.

The energy budget varies dramatically in space, reflect-
ing the inhomogeneity of the near wake. To efficiently map
the effect of forcing on the net interscale energy transfer
throughout the near wake, Equation 1 was evaluated across
a grid of locations in physical space. The distribution of
(−Πa−Πa

U ) at ri = 0.1d (small scales) and ri = 1d (large
scales) in the unforced and forced cases are shown in Fig-

(a)

(b)

Figure 6: Distribution of (−Π−ΠU )/εr in scale space
at {x = 1.1d,y = 0.5d,z = 0.08d}: (a) Unforced,
(b) R = 6.2.
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Figure 7: Orientation-averaged scale-by-scale energy
budget using Equation 1 at {x = 1.1d,y = 0.5d,z =
0.08d}: (a) Unforced, (b) R = 6.2.

ure 8. At small scales, the net interscale energy in the shear
layer is similar in both the unforced and forced cases. With
forcing, the interscale energy transfer at small scales is no-
tably increased along the wake centerline, which may be
related to the higher TKE dissipation rate along the wake
centerline due to the generated small scale vortices. At large
scales, the net interscale energy transfer has an inverse be-
havior at the vortex formation region and up to x≈ 4d due to
the growth of the vortex street. The attenuation of the vor-
tex street by forcing reduces this inverse cascading behavior
considerably. Therefore, the findings of this study reinforce
the fact that high-frequency forcing can attenuate a global
flow instability, such as vortex shedding, and significantly
modify the entire turbulence cascade despite directly acting
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only on the small scales of the flow.

(a)

(b)

(c)

(d)

Figure 8: Distribution of (−Πa−Πa
U )/εa

r throughout
the near wake at small and large scales. (a) Unforced,
ri = 0.1d; (b) R = 6.2,ri = 0.1d; (c) Unforced,
ri = 1d; (d) R = 6.2,ri = 1d.

CONCLUSION
The small and large scale behavior of the wake of a

blunt trailing edge body at Re = 2500 was altered by high-
frequency forcing. Direct excitation of the small scales of
the flow was achieved using an array of spanwise-oriented
synthetic jets operating at a frequency more than an order
of magnitude greater than the dominant instability frequen-
cies of the base flow. Forcing was applied upstream of the
trailing edge at two different amplitudes, generating small

scale vortices which were convected along and outside of
the shear layers into the forming vortex street. This sig-
nificantly increased the dissipation rate of TKE in the shear
layers and wake, which was accompanied by higher random
velocity fluctuations but diminished low-frequency coher-
ent fluctuations. Phase averaging of the wake velocity field
showed that in the z = 0.08d measurement plane the inter-
action of the separated shear layers was inhibited due to
their increased thickness and reduced strength. While forc-
ing did not entirely decimate the vortex street, the strength
of the shed vortices was reduced by about 50%. The ef-
fect of forcing on the interscale energy transfer in the tur-
bulence cascade was examined using Equation 1. It showed
that at intermediate length scales in the shear layer, the en-
ergy transfer from large to small scales was accelerated.
Furthermore, the attenuation of the vortex street by forc-
ing was linked to diminished inverse cascading behavior at
large scales along the wake centerline. These results echo
previous studies that high-frequency forcing is capable of
coupling to the large scales in a flow, allowing for effective
control of global instabilities such as vortex shedding.
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