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ABSTRACT
The Rayleigh-number (Ra) dependence of the heat

transfer in turbulent Rayleigh–Bénard convection at low
Prandtl numbers (Pr) is numerically investigated with the
stochastic one-dimensional turbulence (ODT) model. Its di-
mensionally reduced setting allows to reach Ra = 1013 for
Pr = 0.021 and Ra = 1016 for Pr = 0.7 for samples with
notionally infinite aspect ratio on state-of-the-art worksta-
tions. We estimate the model parameters for each Pr but
keep them fixed when Ra is varied in order to assess the pre-
dictive capabilities of this model for highly turbulent flows.
Present ODT results exhibit various effective Nusselt num-
ber (Nu) scalings Nu ∝ Raγ . The exponent changes from
γ ≈ 1/3 to ≈ 1/2 when Ra increases beyond the critical
value Ra∗ ' 6× 1011 (Pr = 0.021) and Ra∗ ' 6× 1014

(Pr = 0.7), respectively. This is consistent with the tran-
sition to the ultimate regime. With the aid of ODT we show
the presence of a turbulent boundary layer. The onset of the
ultimate regime appears to be correlated with the formation
of a well-developed logarithmic layer and relative enhance-
ment of the turbulent temperature flux towards the bulk.

INTRODUCTION
Rayleigh–Bénard (RB) convection is a canonical prob-

lem for buoyancy-driven flows that are encountered in vari-
ous applications ranging from technological to geophysical
scales (e.g. Chillà & Schumacher, 2012). Figure 1 shows
cylindrical and rectangular RB configurations. The vertical
and lateral length scales are L and D = 2R so that Γ = D/L
is the aspect ratio. Fluid is confined between the heated wall
(Thw) at the bottom and the cooled wall (Tcw) at the top.

For Γ→ ∞ the flow is governed by two dimensionless
control parameters, the Rayleigh number Ra and the Prandtl
number Pr:

Ra =
gβ ∆T L3

νκ
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κ
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Figure 1. Schematics of (a) cylindrical and (b) rectangular
Rayleigh–Bénard (RB) configurations. One-dimensional
turbulence (ODT) simulations are carried out for a repre-
sentative wall-normal vertical line (‘ODT line’).

In these expressions g is the background gravity, whereas ν ,
κ and β denote the kinematic viscosity, thermal diffusion
and thermal expansion coefficients, respectively. Ra and Pr
encompass several orders of magnitude in applications. Ra
reaches easily up to 1027 and Pr takes values in between
10−7–1023 (Chillà & Schumacher, 2012). We consider var-
ious Ra for Pr = 0.7 (air) and Pr = 0.021 (mercury).

The heat transfer is an important global property that
depends crucially on the flow state. In non-dimensional
form it is expressed as the Nusselt number Nu, which is
given by (e.g. Scheel & Schumacher, 2014):

Nu =
Q
Qc

= 1+
〈w′T ′〉V,t
κ ∆T/L

(2)

In this equation, Q denotes the total and Qc the purely con-
ductive heat transfer. The rightmost expression relates Nu
to the turbulent temperature flux per unit area, 〈w′T ′〉V,t ,
where V denotes volume and t temporal averaging under
statistically stationary conditions.

For increasing Ra, the buoyancy forcing increases so
that the boundary layer will eventually become fully turbu-
lent. This is the transition from the classical to the ultimate
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state of convection (Kraichnan, 1962; Grossmann & Lohse,
2000). The transition manifests itself by an increase of the
scaling exponent in Nu ∝ Raγ from γ ≈ 1/3 (Malkus, 1954)
to 1/2 (Kraichnan, 1962).

For Pr ' 1, there is evidence from laboratory exper-
iments that the transition occurs around the critical value
Ra∗ ' 1014 (Chillà & Schumacher, 2012; He et al., 2012).
It has been argued, however, that the Nu ∝ Ra1/2 scal-
ing might also be due to roughness (Zhu et al., 2019)
or non-Oberbeck–Boussinesq effects in laboratory exper-
iments (Urban et al., 2019). Three-dimensional direct
numerical simulations (3-D DNSs) for smooth walls and
Boussinesq fluids have remained in the classical regime
(Ra≤ 2×1012; Stevens et al., 2011). 2-D DNSs, however,
support the existence of the ultimate regime (Zhu et al.,
2018).

For Pr � 1, the transition to the ultimate regime is
expected at much lower Ra (Grossmann & Lohse, 2000).
The critical value has been estimated as Ra∗ ' 1011 for
Pr ' 0.02 (Chavanne et al., 1997; Schumacher et al., 2016;
Ahlers et al., 2017). 3-D DNSs have reached Ra = 4×108,
which is still in the classical regime (Schumacher et al.,
2016). To the best of our knowledge there is no DNS data
available that would support or disprove the expected tran-
sition.

With this study we aim to contribute to the discus-
sion by reporting numerical simulation results beyond tran-
sitional Ra for two Pr numbers. This is made feasible by
utilizing the map-based, stochastic one-dimensional turbu-
lence (ODT) model (Kerstein, 1999). We specifically limit
our attention to Boussinesq fluids and smooth walls.

OVERVIEW OF THE ODT MODEL
The ODT computational domain is a statistically rep-

resentative, vertical line of the turbulent flow as indicated
in figure 1. There are no sidewall boundaries so that ODT
simulations are performed for an RB cell with notionally
infinite aspect ratio.

Stochastic simulations are performed with the temporal
ODT formulation Kerstein (1999); Kerstein et al. (2001);
Wunsch & Kerstein (2005). We have extended the model
formulation of Wunsch & Kerstein (2005) to three velocity
components (Kerstein et al., 2001) within a dynamically-
adaptive framework (Lignell et al., 2013, 2018).

Governing Equations
The governing equations are the conservation equa-

tions of mass, momentum, and energy plus an equation
of state. Here we make use of the Oberbeck–Boussinesq
approximation with the linear equation of state, ρ(T ) =
ρ0
[
1−β (T −T0)

]
, where T is the temperature and ρ the

weakly fluctuating density; the subscript 0 denotes back-
ground values. The density is therefore treated as constant
except for the buoyancy forces. In this limit the ODT equa-
tions read (Wunsch & Kerstein, 2005):

∂ui

∂ t
+Ei(α) = ν

∂ 2ui

∂ z2 (3)

∂T
∂ t

+ET = κ
∂ 2T
∂ z2 (4)

Here (ui) = (u,v,w) denotes the Cartesian velocity com-
ponents, t the time and z the vertical coordinate, whereas

Ei(α) and ET are stochastic terms that depend on the flow
state. Ei(α) models the effects of turbulent advection (Ker-
stein, 1999), buoyancy (Wunsch & Kerstein, 2005) and
fluctuating pressure gradient forces (Kerstein et al., 2001),
whereas ET only represents turbulent advection. The effi-
ciency of pressure-velocity couplings is adjustable by the
model parameter α , which takes values in between 0 and 1.

According to equations (3) and (4), molecular diffusion
is treated as a continuous deterministic process, which is
resolved in one dimension. The numerical solver uses a
finite-volume-based discretization (Lignell et al., 2013).

Stochastic Eddy Events
Deterministic diffusion is interrupted by instantaneous

mapping (eddy) events. Each mapping consists of a permu-
tation of fluid parcels across a randomly selected interval
of the ODT line. This permutation is more generally de-
scribed by a measure-preserving map yielding conservation
of mass, momentum, and energy in an integral sense. The
mapped flow profiles must be continuous and may only ex-
hibit locally enhanced gradients.

These conservation and scale-locality properties are
addressed by the triplet map (TM; Kerstein, 1999). For a
given ODT line interval, z0 ≤ z≤ z1, the TM (i) compresses
flow profiles to a third of their length, (ii) pastes two copies
to fill the line interval, and (iii) flips the central copy to en-
sure continuity. This algorithm is used in the adaptive ODT
implementation in order to automatically increase the reso-
lution in turbulent regions (Lignell et al., 2013).

Eddy events are described by the random variables lo-
cation z0 and size l = z1 − z0 for a given time t. These
variables have to be sampled from the eddy-rate distribu-
tion λ (l,z0; t) = l−2τ−1(l,z0; t), which depends on the flow
state and is therefore unknown. A thinning-and-rejection
method is used in practice to avoid the construction of the
distribution function (Kerstein, 1999). The eddy rate τ−1

can be estimated from the flow state on energetic grounds.
It follows from the eddy energy l2/τ2, which is given by
(Kerstein, 1999; Wunsch & Kerstein, 2005):

l2

τ2 'C2 2
ρ0Ve

(
∆Ekin +∆Epot−Z Evp

) !
≥ 0 (5)

∆Ekin and ∆Epot denote the changes of the kinetic and the
potential energy, respectively, due to the implementation of
an eddy event of size l and Ve is the associated eddy volume.
Evp is a viscous penalty energy for the selected candidate
event and implies energetic suppression of eddy events be-
low the Kolmogorov scale (Kerstein, 1999). C is the eddy-
rate and Z the small-scale (viscous) suppression parameter
of the model. Candidate eddy events are deemed unphysical
and rejected when l2/τ2 < 0. Otherwise they are accepted
with probability τ−1/τ−1

s � 1, where τ−1
s is the mean sam-

pling rate (Kerstein, 1999). No large-scale suppression is
used so that sizes up to l/L = 1 are permitted.

In our slightly extended formulation, the potential en-
ergy due to buoyancy is formally released to the vertical
velocity component but can be redistributed simultaneously
to the other components when α 6= 0. In this case kinetic en-
ergy is also taken from all velocity components to obey en-
ergy conservation properties. Further technical details will
be described elsewhere.

The model parameters C, Z, and α have to be estimated
with the aid of reference data from DNS or measurements.
This is addressed below.
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Figure 2. Model validation for the Nusselt number Nu.
(a) Pr = 0.7, Ra = (2.5± 0.5)× 1010, Nuref = 176± 5
(Stevens et al., 2011; Li et al., 2012); (b) Pr = 0.021,
Ra = 4×108, Nuref = 27.5±2.5 (Schumacher et al., 2016).
Near-optimal values for C and Z are approximately given by
Copt(Z); the selected values are given by dotted lines.

RESULTS
In the following, we focus on the Ra-dependency of

RB convection for Pr = 0.021 and 0.7, respectively. First,
the ODT model parameters are estimated for each Pr. After
that, these parameters are fixed in order to assess ODT’s
predictive capabilities.

Model Validation
The ODT model formulation has been validated for RB

convection from a fundamental point of view by Wunsch &
Kerstein (2005). Selecting α = 0 recovers their ODT set-up
except for a discrete evaluation of the mapping-kernel. We
were able to reproduce relevant reference results. Next, we
selected α = 2/3 in order to introduce a tendency to small-
scale isotropy as in Kolmogorov’s turbulence by including
pressure-velocity in the model Kerstein et al. (2001). Ap-
proximately the same Nusselt number Nu has been obtained
for various model parameters C and Z irrespective of α . We
fixed α = 2/3 and compared ODT results to some available
DNS data.

Figure 2 shows the difference ∆Nu = Nu−Nuref be-
tween the ODT and reference Nusselt numbers for various
model parameters C and Z. Various parameter combina-
tions yield the same Nu or, likewise, the same wall tem-
perature gradient. These combinations are described by the
empirical curves Copt(Z) = 2.0 Z 0.58 +14 for Pr = 0.7, and
Copt(Z) = 0.35 Z 0.58 +35 for Pr = 0.021.

It remains to fix Z and C by an additional criterion. We
recall from equation (5) that Z is related to viscous effects.
By assuming further that the turbulent boundary layer dy-
namics are universal, Z has been estimated by matching the
logarithmic region of the mean temperature profile. This
was done only once for Pr = 0.7, Ra = (2.5± 0.5)× 1010

(see figure 5(a); and Klein et al., 2018, for further details).
The physical model parameters selected by this procedure
are given by α = 2/3, Z = 220, C = 60 for Pr = 0.7, and
C = 43 for Pr = 0.021.
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Figure 3. (a) Scaling of the Nusselt number Nu versus
Rayleigh number Ra for the Prandtl numbers Pr = 0.7 and
0.021. (b) Same data but compensated with Ra0.32. ODT
results and the corresponding scaling laws are given in blue
and red. Reference DNS data (black) is given for 1≤ Γ≤ 3,
Pr = 0.7 (Scheel & Schumacher, 2014); Γ = 1, Pr = 0.021
(Scheel & Schumacher, 2016; Schumacher et al., 2016);
Γ= 25, Pr = 0.7 and 0.021 (Pandey et al., 2018). Reference
measurement data (EXP, gray) encompasses 0.23≤ Γ≤ 20,
0.5≤ Pr≤ 10 as compiled in Chillà & Schumacher (2012).
The ultimate scaling according to Kraichnan (1962) is given
by dash-dotted lines with arbitrary prefactors. Expected
transition ranges in terms of Ra are marked by dotted lines.
Thick crosses mark the ODT validation cases (figure 2).

Nusselt Number
The dependence Nu(Ra,Pr) is investigated for Pr =

0.7 and 0.021 by stochastic ODT simulations. The ODT
model parameters are kept constant to address the predic-
tive capabilities of the model. Nu is computed accord-
ing to equation (2) for the 1-D computational domain by
long-time averaging over several million eddy events in the
statistically stationary state. Confidence margins are ob-
tained by computing Nu in the upper and lower half of the
domain only. The Rayleigh numbers investigate encom-
pass 108 ≤ Ra ≤ 1016 Pr = 0.7 and 105 ≤ Ra ≤ 1013 for
Pr = 0.021.

Figure 3 shows the Nusselt number Nu as a function of
the Rayleigh number Ra for both Prandtl numbers Pr inves-
tigated. ODT simulation results are compared to reference
data from DNS and laboratory measurements, which en-
compass a range of aspect ratios and Prandtl numbers. For
very large Ra, however, there is no reference data so that we
show the theoretical scaling Nu ∝ Ra1/2 [log(Ra)]−3/2 ac-
cording to Kraichnan (1962). The Nusselt numbers shown
in figure 3(a) exhibit very good agreement between ODT
and the available reference values across eight decades of
Ra for each Pr. This agreement is more of a qualitative
nature since the range of Nu is rather large.
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Table 1. Effective scaling laws Nu ∝ Raγ for various
ranges Ramin ≤ Ra≤ Ramax. Corresponding reference val-
ues γref are from Scheel & Schumacher (2014, 2016, †),
Shraiman & Siggia (1990, ∗), and Kraichnan (1962, ‡).

Pr Ramin Ramax γODT γref

0.021 106 5×108 0.29(1) 0.26(1)†

0.021 109 5×1011 0.32(1) 0.28(1)∗

0.021 4×1011 2×1013 0.40(2) 0.448‡

0.7 108 1013 0.32(1) 0.29(1)†

0.7 8×1014 1016 0.44(1) 0.458‡

The comparison between ODT simulated Nu and refer-
ence data is made more quantitative in figure 3(b) by show-
ing data compensated with Ra0.32. This gives a better im-
pression of the confidence margins that are within the sym-
bol size if they are not visible. The ODT data exhibit var-
ious effective scaling laws. These have been obtained by a
least-squares fit and are summarized in table 1.

For Ra < 1013 (Pr = 0.7) and Ra < 109 (Pr = 0.021),
ODT exhibits the classical scaling close to Nu ∝ Ra1/3 in
agreement with Malkus (1954). A relative decrease of the
exponent for Ra < 109 to Nu ∝ Ra2/7 (Shraiman & Siggia,
1990) is only observed for Pr = 0.021. For this Pr, the
ODT simulated Nu for Ra = 105 agrees with the reference
value of Pandey et al. (2018) that has been obtained for a
large-aspect-ratio RB cell (Γ = 25). This suggests that the
ODT formulation is consistent with Γ� 1 and, thus, com-
plementary to DNS and laboratory experiments that exhibit
Γ . 1. We conjecture that geometrical, small-aspect-ratio
effects (like the unresolved large-scale circulation) are the
main reason for the different scaling observed for Ra < 109

(Pr = 0.7).
The transition to the ultimate state of convection is ex-

pected for 1.8×1013 ≤ Ra≤ 8×1014 (Pr = 0.7; He et al.,
2012) and 2× 1010 ≤ Ra ≤ 5× 1011 (Pr = 0.021; Schu-
macher et al., 2016; Ahlers et al., 2017). These ranges are
marked with dotted lines in figure 3(b) and, indeed, a tran-
sition has been observed in many experiments for Γ = O(1)
and Pr =O(1). It is remarkable that the present ODT results
exhibit the expected transition within the expected range of
Ra for the unchanged model configuration. For even larger
Ra, present ODT results exhibit the onset of the Kraichnan
(1962) scaling. Only the prefactor retains a dependence on
Pr. Table 1 summarizes these results in terms of Nu ∝ Raγ

scalings. ODT weakly overestimates (underestimates) the
exponent γ expected for the classical (ultimate) regime.

The critical Ra∗ obtained with ODT are at the upper
end of the expected transition ranges, that is, Ra∗' 6×1014

(Pr = 0.7) and Ra∗ ' 6×1011 (Pr = 0.021). We note that
the aspect ratio might influence Ra∗ due to the presence,
or absence, of a large-scale circulation. In ODT, any mean
circulation is absent by construction (see figure 4).

Bulk Profiles
Figure 4 shows profiles of the instantaneous and mean

temperature together with profiles of a wall-tangential ve-
locity component for the two Prandtl numbers investigated.
The selected cases exhibit approximately the same Grashof
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Figure 4. Vertical profiles of the instantaneous T and
time-averaged temperature 〈T 〉 together with the instanta-
neous wall-tangential velocity u (inset). Two cases with
different Pr but similar Gr = (1.6±0.3)×1010 are shown.
Uf =

√
gβ ∆T L is the free-fall velocity. Vertical dotted

lines are given for orientation.

number Gr = Ra/Pr = (1.6± 0.3)× 1010. The spatial
scales in the instantaneous velocity fields are therefore com-
parable for both cases. They are also similar to the spa-
tial scales in the temperature field since the diffusion time
scales are similar for Pr ' 1. By contrast, the spatial scales
are larger in the temperature field for the lower Pr = 0.021,
which is due to the faster thermal than viscous diffusion.

The mean temperature profile is smooth, monotonic
and symmetric to (0.5,0.5). The mean velocity is zero since
ODT does not resolve the cell-like structure for Γ→ ∞.

Low-Order Temperature Statistics
Vertical profiles of first and second order temperature

statistics have been obtained by temporal averaging in the
statistically stationary state. This yielded:

Θ(z) =
(
〈T 〉(z)−Tb

)/
∆T (6)

σ(z) =
√〈

T 2
〉
(z)−〈T 〉2(z)

/
∆T (7)

In these equations, 〈·〉 denotes the temporal average, Θ the
non-dimensional mean temperature, σ the non-dimensional
standard deviation of the temperature fluctuations, and Tb =
(Thw +Tcw)/2 the bulk temperature.

Figures 5 and 6 show low-order temperature statistics
for Pr = 0.7 and 0.021, respectively. Reference DNS data
are available in the classical regime and these are shown for
comparison. The flow statistics are symmetric to the mid-
height so that we present data for the lower half of the do-
main (0≤ z/L≤ 0.5). The thermal boundary layer thickness
δ/L = (2 Nu)−1 is given for orientation. Geometrically, δ

is given by the intersection of the linearly extrapolated wall-
temperature gradient, z (dΘ/dz)hw+0.5, and the horizontal
axis Θ = 0 since the temperature flux is carried entirely by
molecular diffusion next to the wall. Note that σ has been
normalized by its maximum value σmax in figures 5(b) and
6(b) in order to focus on the shapes.

In general, Θ and σ are well captured by ODT for both
Pr, in the vicinity of the wall and further towards the bulk.
For Pr = 0.7 (figure 5) one can discern a spurious, undu-
lating structure in the ODT results for finite distance from
the wall, 2× 10−3 . z/L . 10−2. This feature is a mod-
eling artifact that is related to the triplet mapping (Lignell
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Figure 5. Thermal boundary layer for Pr = 0.7. (a) Non-
dimensional mean temperature Θ for the bottom half of the
domain. Dash-dotted lines give the linear extrapolation of
the wall gradient. (b) Standard deviation σ of the temper-
ature fluctuations. Vertical dash-dotted lines mark the ther-
mal boundary layer thickness δ . Dotted lines are fits to the
logarithmic region. Reference DNS data is from Li et al.
(2012) for the centerline of a cylindrical cell with Γ = 1.

et al., 2013; Klein & Schmidt, 2017). Interestingly, this
artifact has disappeared for Pr = 0.021 as can be seen in
figure 6. We attribute this effect to the thermal diffusivity,
which is larger for lower Pr. In addition, the turbulence is
also more vigorous and, considering the velocity field, ex-
hibits a broader range of scales. So, not only molecular but
also turbulent processes diffuse the imprint of the TM. This
is consistent with the effects of a reduced ODT small-scale
suppression parameter Z (see Klein et al., 2018).

Both Θ and σ exhibit a logarithmic region when Ra is
large enough. This region is described by:

Θ(z) = A ln(z/L)+B σ(z) =C ln(z/L)+D (8)

The coefficients A,B,C,D have been obtained by a least-
squares fit for the interval 10−2 ≤ z/L ≤ 10−1. These fits
are given by dotted lines in figures 5 and 6, where the case
with Pr = 0.021, Ra = 105 was excluded since it does not
exhibit a logarithmic region. Nevertheless, the coefficients
A and C approach zero for increasing Ra which is in quali-
tative agreement with Ahlers et al. (2012).

Turbulent Temperature Flux
The turbulent temperature flux density 〈w′T ′〉 is com-

puted in ODT on the basis of the map-induced changes in
an operator-splitting fashion. Therefore, cross-correlations
are typically captured rather well by the lower-order ODT
model even when the autocorrelation of the fluctuating
quantities is underestimated (e.g. Kerstein, 1999; Kerstein
et al., 2001; Klein et al., 2019). We make use of this prop-
erty of the ODT model to gain further insight into RB con-
vection in the ultimate compared to the classical regime.

Figure 7 shows vertical profiles of the time-averaged
turbulent temperature flux density 〈w′T ′〉 obtained with
ODT for the lower half of the domain. The data have been
normalized with the maximum value 〈w′T ′〉max in order to
focus on the shapes. In the classical regime, for Pr = 0.7,
Ra = 3×1010 in figure 7(a), 〈w′T ′〉 increases rapidly across
the diffusive sublayer so that the maximum value is reached
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Figure 6. Similar to figure 5 but for Pr = 0.021. Reference
DNS data is from Pandey et al. (2018) for a rectangular cell
with Γ = 25.
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Figure 7. Turbulent temperature flux density 〈w′T ′〉
across the boundary layer. (a) Pr = 0.7; (b) Pr = 0.021.
Vertical dash-dotted lines mark the thermal boundary layer
thickness δ due to the slope method.

at z/L ≈ 2δ/L ≈ 6× 10−3. This is similar for the case
Pr = 0.021, Ra = 1010 in figure 7(b).

By contrast, in the ultimate regime, for Pr = 0.7, Ra =
1015 in figure 7(a), 〈w′T ′〉 has only reached ≈ 82% of its
maximum value at z/L = 2δ/L ≈ 2× 10−4. The turbulent
flux increases further with distance, but more gradually, and
attains its maximum value in the bulk for z/L & 0.2. A sim-
ilar behavior can be discerned in figure 7(b) for Pr = 0.021,
Ra = 4×1012. Here 〈w′T ′〉 reaches only≈ 75% of its max-
imum value at z/L = 2δ/L ≈ 2× 10−3. Interestingly, the
maximum turbulent flux is reached around z/L ≈ 0.15 in
the present ODT results, but reduces again towards the mid-
height. This effect is robustly observed also for a higher Ra
investigated.

Note that the case Pr = 0.021, Ra = 105 is dominated
by thermal diffusion. The sublayer extends up to z/L =
2δ/L≈ 0.4 and 〈w′T ′〉 peaks at mid-height.

Note further that the shape differences of 〈w′T ′〉 be-
tween the cases Pr = 0.7, Ra = 3× 1010 and Pr = 0.021,
Ra = 1010 across 10−3 ≤ z/L ≤ 10−2 are presumably re-
lated to the TM (see the discussion of figures 5 and 6).
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CONCLUSION
Stochastic one-dimensional turbulence (ODT) simula-

tions of low-Pr convection have been performed in order
to address the transition from the classical to the ultimate
regime. A Boussinesq fluid between smooth isothermal no-
slip walls has been considered in a set-up with infinite as-
pect ratio. We have shown that ODT is able to capture the
classical Nu ∝ Ra1/3 scaling (Malkus, 1954) as well as the
onset of the ultimate Nu ∝ Ra1/2 scaling (Kraichnan, 1962)
for fixed model parameters. The critical Rayleigh num-
bers Ra∗ are also captured. ODT yields Ra∗ ' 6× 1014

(Pr = 0.7) and Ra∗ ' 6×1011 (Pr = 0.021). These values
are within the transition ranges given in the literature (He
et al., 2012; Schumacher et al., 2016; Ahlers et al., 2017).

Furthermore, the present ODT results exhibit a turbu-
lent (logarithmic) boundary layer before and after the tran-
sition. After the onset of the ultimate regime, however,
molecular-diffusive contributions to the temperature flux
are no longer negligible outside the thermal sublayer. This
appears to be a consequence of the strongly developed loga-
rithmic region by which fluid is transported efficiently over
large distances in the wall-normal vertical direction.

The results obtained indicate very reasonable predic-
tive capabilities of ODT and give a glimpse at the potential
of physics-based, stochastic turbulence models.
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