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ABSTRACT
The temporal dynamics of a two-scale near-wall flow

are investigated, with a particular emphasis on nonlinear
turbulent transport between the scales. The energy bal-
ance equations at each scale are derived, and their statis-
tics and dynamics are analysed. The temporal dynamics of
the energy-containing eddies at each scale follow the self-
sustaining process, based on the interaction between streaks
and quasi-streamwise vortices. It is shown that the tur-
bulent production term correlates well with the lift-up ef-
fect and the pressure transport term correlates well with
streak instability, at both large and small scales. Across
the wall-normal domain, the dominant scale interaction pro-
cess is the cascade of energy from large to small scales
and it is most active during the late stages of streak break-
down. However, very close to the wall, energy transfer from
small to large scales occurs highly intermittently and it leads
to the formation of large-scale wall-parallel velocity struc-
tures. In the presentation, the full dynamics of the two-scale
interaction system will be discussed in detail.

INTRODUCTION
There is a growing body of evidence indicating that

wall-bounded turbulence is comprised of a hierarchy of
energy-containing eddies, as described by Townsend (1980)
in the attached-eddy hypothesis. Townsend postulated that
the characteristic lengthscale of these eddies is approxi-
mately proportional to the distance from the wall, with
the smallest eddies being located in the near-wall region
and scaling in inner units, and the largest eddies occu-
pying the entire wall-normal domain and scaling in outer
units. Furthermore, it was hypothesised that these coher-
ent structures were statistically self-similar with respect to
the given lengthscale. Several recent studies have sup-
ported Townsend’s theory, including the linear growth of
the spanwise integral lengthscale with distance from the
wall (Tomkins & Adrian, 2003), the logarithmic depen-
dence of the turbulence intensities of wall-parallel velocity
components (Marusic et al., 2013) and the self-similarity
of structures of various spanwise lengthscales in the loga-

rithmic layer (Hwang, 2015). It has also been shown that
the sustainment of energy-containing structures of a partic-
ular lengthscale in the hierarchy occurs even in the absence
of motion at other scales, including in the near-wall region
(Jiménez & Pinelli, 1999), the logarithmic layer (Hwang &
Cossu, 2011) and the wake layer (Hwang & Cossu, 2010).
In particular, the temporal dynamics of isolated energy-
containing eddies at each scale are remarkably similar to
the self-sustaining process of the near-wall region (Hwang
& Bengana, 2016), based on the interaction between streaks
and quasi-streamwise vortices (Hamilton et al., 1995).

However, the existence of this scale-independent self-
sustaining process does not imply that the interaction be-
tween structures of different scales in the hierarchy is unim-
portant. To the contrary, the key process of turbulent dissi-
pation is the Richardson-Kolmogorov energy cascade (Kol-
mogorov, 1941, 1991), in which turbulent kinetic energy is
produced at the integral lengthscale, transported down to the
smallest possible lengthscale and dissipated into heat by the
fluid viscosity. Such scale interaction processes appear to be
crucial in the near-wall region, to which coherent structures
of all scales in the hierarchy would contribute. For exam-
ple, it has been demonstrated that the interaction between
wall-attached structures of different scales plays a key role
in skin-friction generation (de Giovanetti et al., 2016). In
addition, it appears that scale interaction is responsible for
the inner-scaling of coherent structures in the near-wall re-
gion itself (Hwang, 2016).

Several previous studies have explored scale interac-
tion in the near-wall region, specifically between the self-
sustaining inner structures and near-wall penetrating outer
structures (e.g. Mathis et al., 2009; Agostini & Leschziner,
2016). The most commonly used technique in such analyses
is a decomposition of the near-wall velocity field into inner
and outer components, so as to understand the superposi-
tion/modulation effect of the outer structures on the near-
wall dynamics. However, such a binary decomposition is
incompatible with the attached eddy hypothesis, which as-
serts that the near-wall velocity field is influenced by coher-
ent structures of all scales in the hierarchy. To reconcile the
study of scale interaction with the attached eddy hypothe-
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sis, Cho et al. (2018) considered the equation of the turbu-
lent kinetic energy of each spanwise Fourier mode, which
adequately characterises the size of the coherent structures
(Hwang, 2015). Through the visualisation of the triad wave
interactions of the nonlinear turbulent transport term, this
work confirmed the role of the classical energy cascade and
identified two new scale interaction processes; the involve-
ment of larger structures in the energy cascade of smaller
structures and the non-negligible energy transfer from small
to large scales in the near-wall region.

Despite this important progress in statistically steady
turbulence, the temporal dynamics of flows with multiple
scales of motion are not well understood and this is the issue
that this work seeks to address. For this purpose, the ideal
flow configuration is the shear stress-driven model (Doohan
et al., 2019), which has been introduced recently. This
model describes the dynamics of the inner-scaling (univer-
sal) part of near-wall turbulence in the absence of outer flow,
as the friction Reynolds number Reτ → ∞. The key fea-
ture of the shear stress-driven model is that it is applicable
to the near-wall region and lower logarithmic layer of tur-
bulent Couette, Poiseuille and Hagen-Poiseuille flow, since
as Reτ → ∞, the effects of the flow geometry or curvature
are not felt. Therefore, the model allows for the most gen-
eral analysis of multiscale turbulence near the wall. In this
study, shear stress-driven flow in a domain just large enough
to sustain two integral lengthscales of motion is considered.
The velocity field is decomposed into large- and small-scale
components, and the momentum and energy balance equa-
tions at each scale are derived. The statistics and dynamics
of the nonlinear turbulent transport terms are analysed, and
related to scale interaction processes.

NUMERICAL METHODS
Shear Stress-Driven Model

The flow considered is that of incompressible fluid in a
rectangular domain, as described by the shear stress-driven
model of Doohan et al. (2019). The model is formulated in
inner units, with domain dimensions (L+

x ,L
+
y ,L

+
z ), spatial

co-ordinates x+ = (x+,y+,z+) and velocity components
u+ = (u+,v+,w+). Employing the Reynolds decomposi-
tion, the velocity field can be expressed in terms of the
mean and fluctuating velocity components u+(x+, t+) =
U+(y+, t+)+u′+(x+, t+), which satisfy the equations

dU+

dy+
−〈u′+v′+〉x+,z+ = 1 (1)

and

u
′+
t+ +(U+ ·∇)u

′++(u
′+ ·∇)U+ =−∇p

′+

+∇
2u
′+−

(
(u
′+ ·∇)u

′+−〈(u
′+ ·∇)u

′+〉x+,z+
) (2)

respectively, where p
′+ is the pressure fluctuation, 〈 · 〉x+,z+

denotes the average in the streamwise and spanwise direc-
tions, and · denotes the average in time. The layer of fluid
above the wall that scales in inner units is called the meso-
layer (e.g. Wei et al., 2005), which has been observed in
the mean-momentum equation. The extent of the mesolayer
scales with the wall-normal location of maximum Reynolds
stress as y+max ∼

√
Reτ (Long & Chen, 1981; Sreenivasan

& Sahay, 1997), since the viscous wall effects are non-
negligible below this point. Therefore, within the meso-
layer, the −y+/Reτ term derived from any imposed pres-
sure gradient will vanish as Reτ →∞ and the right hand side
of equation (1) above is just unity. Furthermore, the extent
of the mesolayer increases as Reτ increases and in the high-
Reτ limit, the mesolayer encompasses a hierarchy of scales.
Hence, arbitrary values of the domain dimensions can be
fixed, under the assumption that L+

x ,L
+
y ,L

+
z �

√
Reτ .

At the lower boundary of the domain, the no-slip con-
dition u+

∣∣
y+=0 = 0 is imposed to represent the stationary

wall. At the upper boundary, a horizontally-uniform shear
stress is applied such that the bulk flow rate across the do-
main is maintained during simulations. The streamwise
boundary condition is expressed as

u+y+
∣∣∣
y+=L+

y

(t+) =
〈

u+y+
∣∣∣
y+=0

〉
x+,z+

(t+)

+C+(U+
0 −U+

b (t+))
(3)

where U+
b (t+) is the instantaneous bulk velocity, U+

0 is the
laminar bulk velocity and C+ is a constant that maintains
U+

b (t+) close to U+
0 . This technique is very similar to that

used to maintain constant mass flux in pressure-driven chan-
nel flow. Impermeability and stress-free conditions are im-
posed at the upper boundary for the wall-normal and span-
wise components respectively, namely v+

∣∣
y+=L+

y
= 0 and

w+
y+
∣∣
y+=L+

y
= 0. Taking the time-average of equation (3) and

given the impermeability condition, the mean-momentum
equation (1) is indeed satisfied at the upper boundary of
the domain. Periodic boundary conditions are imposed in
both the streamwise and spanwise directions. Further de-
tails about the model and its validation are discussed in
Doohan et al. (2019).

Given its formulation in inner units, the shear stress-
driven model is governed by the unit-Reynolds number
Navier-Stokes equations (2) and the inner-scaled domain di-
mensions (L+

x ,L
+
y ,L

+
z ) take on the role of control param-

eters. In particular, due to the periodic boundary condi-
tions in the streamwise and spanwise directions, the do-
main size can be used to determine the expected hierar-
chy of integral lengthscales of motion. As a first step in
the study of the temporal dynamics of multiscale mesolayer
turbulence, the number of integral lengthscales is restricted
to two. To this end, the domain size is fixed at (L+

x =
640,L+

y = 180,L+
z = 220), hence only eddy-containing ed-

dies with spanwise lengthscales λ+
z ≈ 220 and λ+

z ≈ 110
will be resolved (Jiménez & Moin, 1991), and structures of
larger lengthscales will be removed. In this way, the model
allows for the simplest analysis of the dynamics of a two-
scale interaction system.

Two-Scale Governing Equations
In order to represent the motions at each integral

lengthscale, the fluctuating velocity component is decom-
posed as u′+ = u+

l +u+
s , where u+

l and u+
s denote the large-

and small-scale structures respectively. As of now, no as-
sumption is made as to the definition of u+

l and u+
s other

than that they are disjoint sets. Substitution of u+
l and u+

s
into (2) yields the large- and small-scale momentum equa-
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tions

∂u+
l

∂ t+
+(U+ ·∇)u+

l =−(u+
l ·∇)U+−∇p+l +∇

2u+
l −Pl{

(u+
l ·∇)u+

l +(u+
l ·∇)u+

s +(u+
s ·∇)u+

l +(u+
s ·∇)u+

s }
(4)

and

∂u+
s

∂ t+
+(U+ ·∇)u+

s =−(u+
s ·∇)U+−∇p+s +∇

2u+
s −Ps{

(u+
s ·∇)u+

s +(u+
s ·∇)u+

l +(u+
l ·∇)u+

s +(u+
l ·∇)u+

l }
(5)

where p
′+ = p+l + p+s are the large- and small-scale pres-

sure fluctuations, and Pl{ · } and Ps{ · } denote pro-
jection onto large- and small-scales respectively. Here, it
should be noted that all of the terms in equations (4) and (5)
are linear except for the advection terms, through which all
scale interaction occurs.

Multiplying equation (4) by u+
l and averaging in the

streamwise and spanwise directions yields the large-scale
energy balance equation, which can be written in compo-
nent form as

∂E+
ul

∂ t+
= P+

ul +T+
ul +T+

p,ul +T+
ν ,ul − ε

+
ul

∂E+
vl

∂ t+
= P+

ww+T+
vl +T+

p,vl +T+
ν ,vl − ε

+
vl

∂E+
wl

∂ t+
= P+

wl +T+
wl +T+

p,wl +T+
ν ,wl − ε

+
wl

(6)

where E+
ul = 1

2 〈u
+2
l 〉 is the kinetic energy, P+

ul =
−U+

y+〈u
+
l v+l 〉 is the turbulent production, T+

ul =−〈u+l (u
+
l ·

∇u+l + u+
l · ∇u+s + u+

s · ∇u+l + u+
s · ∇u+s )〉 is the turbu-

lent transport, T+
p,ul = −〈u

+
l p+l+x 〉 is the pressure transport,

T+
ν ,ul = 1

2 〈u
+2
l 〉y+y+ is the viscous transport and ε

+
ul =

〈(u+l+x )
2 + (u+l+y )

2 + (u+l+z )
2〉 is the dissipation of the large-

scale streamwise component. Analogous definitions exist
for the terms in the small-scale streamwise energy-balance
equation, namely E+

us, P+
us , T+

us , T+
p,us, T+

ν ,us and ε+us, as well
as for the large- and small-scale wall-normal and spanwise
equations.

The turbulent transport terms can be further decom-
posed into same-scale and inter-scale transport i.e. T+

ul =
T+

ss,ul + T+
in,ul , where the same-scale term only depends

on the velocity components at that scale (e.g. T+
ss,ul =

−〈u+l (u
+
l ·∇u+l )〉) and the inter-scale term depends on both

large- and small-scale velocity components. All of the
terms in the energy balance equations represent same-scale
processes (e.g. pressure transport, dissipation etc.) apart
from the inter-scale transport terms, hence any scale interac-
tion process must be linked to these functions. Furthermore,
the inter-scale turbulent transport terms for each component
can be re-written such that the negation of the same term ap-
pears in the large- and small-scale energy balance equations
for that component

T+
ul = T+

ss,ul +T+∗
in,ul −T+

uls

T+
us = T+

ss,us +T+∗
in,us +T+

uls

(7)

hence it represents same-component inter-scale turbulent
transport, i.e. the direct transfer of energy from e.g. u+l
to u+s . The terms in the energy-balance equations described
above are the observables used to study the temporal dy-
namics of two-scale near wall turbulence.

MEAN TURBULENT STATE
Having introduced the shear stress-driven model and

the energy balance equations at each scale, the task at hand
is to analyse the temporal dynamics of the two-scale system.
Before this can be done however, the statistics and spectra
of the mean turbulent state must first be analysed in order to
identify the scale-interaction processes of interest.

Spectra
The premultiplied streamwise turbulent transport (T+

u )
co-spectra of the mean turbulent state is shown in figure 1,
as a function of the wall-normal height y+ and the spanwise
wavelength λ+

z . The turbulent transport shows regions of
both energy gain (red) and energy loss (blue). The nega-
tive values of T+

u correspond to the regions where the tur-
bulent production (P+

u ) is active, representing the energy-
containing eddies at both scales. For λ+

z ≈ 200, the neg-
ative values of T+

u extend across the entire wall-normal
domain, whereas for λ+

z ≈ 100, the negative values only
reach y+ ≈ 50. For each y+ > 10, positive values of T+

u
are found at smaller wavelengths than those of the nega-
tive values, corresponding to the regions where dissipation
(ε+u ) is dominant. This indicates that there is energy transfer
from larger- to smaller-scales i.e. energy cascade, reaffirm-
ing the classical role of the turbulent transport term. How-
ever, there is also a region of positive T+

u very close to the
wall (y+ < 15), which has been identified in previous stud-
ies (e.g. Lee & Moser, 2015; Cho et al., 2018). In particular,
Cho et al. (2018) showed that this was the manifestation of
energy transfer from smaller- to larger-scales and it is ap-
parent from figure 1 that the value of T+

u in this region in-
creases as λ+

z increases.

Figure 1. Premultiplied one-dimensional spanwise wave-
length co-spectra of streamwise turbulent transport T+

u .

It must be pointed out that the large- and small-scale
velocity components have not yet been formally defined. In
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accordance with the spectra above, u+
l and u+

s are hereby
defined as

u+
l =

1

∑
m=−1

1

∑
n=−1

û′+ei(mkxx++nkzz+), |m|+ |n| 6= 0

u+
s = u

′+−u+
l

(8)

where ·̂ denotes the Fourier transform, and kx and kz are
the fundamental streamwise and spanwise wavenumbers.
Defining variables that represent the motions at each inte-
gral lengthscale then allows for the analysis of the statistics
and temporal dynamics of the scale interaction processes
described above.

Figure 2. Energy balance of u+l : P+
ul (red), T+

ul (black),
T+

p,ul (green), T+
ν ,ul (cyan) and −ε

+
ul (blue).

Figure 3. Energy balance of u+s : P+
us (red), T+

us (black),
T+

p,us (green), T+
ν ,us (cyan) and −ε+us (blue).

Statistics
The terms in the u+l and u+s energy balance equations,

as a function of the wall-normal height y+, are shown in fig-

ures 2 and 3 respectively. It is immediately obvious that the
energy balance of the large-scale structures is primarily be-
tween production and negative turbulent transport, whereas
that of the small-scale structures is primarily between pro-
duction and positive turbulent transport, and dissipation.
For y+ > 50, the terms in the energy balance equations ap-
pear almost isotropic with little change with y+, whereas the
statistics are highly anisotropic closer to the wall. In partic-
ular, the turbulent transport terms T+

ul and T+
us are highly

dependent on the wall-normal height. The wall-normal po-
sition of minimum T+

ul and T+
us coincides with the wall-

normal position of maximum P+
ul and P+

us , indicating where
the energy-containing motions at each scale are most active.
T+

ul achieves its maximum value in a peak close to the wall,
corresponding to the region of positive turbulent transport
in figure 1. T+

us has a similar peak but over a noticeably
smaller interval in y+.

TEMPORAL DYNAMICS
Following the analysis of the mean turbulent state in

the previous section, the terms in the energy balance equa-
tions (6) are now integrated across the wall-normal domain
and the temporal dynamics of the two-scale interaction sys-
tem are investigated.

Self-Sustaining Processes
Firstly, the temporal dynamics of the energy-

containing motions at each scale must be analysed. For this
purpose, the velocity components are decomposed into their
x+-independent and -dependent parts, and the kinetic ener-
gies of large-scale ‘straight’ and ‘wavy’ streaks and rolls are
defined as

E+
ss,l(t

+) =
1
2
〈〈u+l 〉

2
x+〉y+,z+

E+
ws,l(t

+) =
1
2
〈(u+l −〈u

+
l 〉x+)

2〉x+,y+,z+

E+
sr,l(t

+) =
1
2
〈〈v+l 〉

2
x+ + 〈w

+
l 〉

2
x+〉y+,z+

E+
wr,l(t

+) =
1
2
〈(v+l −〈v

+
l 〉x+)

2 +(w+
l −〈w

+
l 〉x+)

2〉x+,y+,z+
(9)

with equivalent definitions for the small-scale counterparts.
Temporal cross-correlations indicate that the above observ-
ables occur in the order E+

sr → E+
ss → E+

ws → E+
wr at both

large- and small-scales, consistent with the self-sustaining
process (Hamilton et al., 1995).

The turbulent production terms P+
ul and P+

us , which
represent turbulent transport by the mean, fuel the self-
sustaining process at each scale. In order to analyse the dy-
namics of this interaction, the temporal cross-correlations
of production and the self-sustaining process are analysed.
The cross-correlations of P+

ul and E+
ss,l at large-scale, and P+

us

and E+
ss,s at small-scale are shown in red in figures 4 and 5.

It is apparent that turbulent production correlates well with
the energy of ‘straight’ streaks at both scales. The peaks are
shifted slightly to the left, indicating that production fluctu-
ates in line with the lift-up effect, which is responsible for
the amplification of the streaks. Given that energy is only
pumped into the streamwise velocity component, it must
is redistributed to the wall-normal and spanwise compo-
nents and this mainly occurs through the pressure transport
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Figure 4. Temporal cross-correlations between P+
ul & E+

ss,l
(red), and T+

p,ul & E+
ws,l (green).

Figure 5. Temporal cross-correlations between P+
us & E+

ss,s
(red), and T+

p,us & E+
ws,s (green).

term. Again, the precise timing of this redistribution is in-
vestigated through cross-correlation with the self-sustaining
process. The cross-correlations of T+

p,ul and E+
ws,l at large-

scale, and T+
p,us and E+

ws,s at small-scale are shown in green
in figures 4 and 5. Both cross-correlation functions are
shifted slightly to the left, implying that pressure transport
occurs just before the energy of ‘wavy’ streaks. Both cor-
relation functions are also negative, since pressure transport
removes energy from the streamwise component.

Energy Cascade
As seen in figures 2 and 3, the large-scale turbulent

transport term T+
ul is mostly negative across the wall-normal

domain, while the small-scale term T+
us is mostly positive.

In addition, the small-scale dissipation term ε+us has much
greater magnitude than its large-scale counterpart. This is
indicative of the transfer of energy from large- to small-
scales in the classical energy cascade. To investigate its
relation to the self-sustaining process at each scale, the tem-
poral cross correlations of T+

uls and E+
ws,l , and ε+us and E+

wr,s

are shown in figure 6, where T+
uls represents the transfer

of energy directly from u+l to u+s . The turbulent transport

Figure 6. Temporal cross-correlations between T+
uls &

E+
ws,l (black), ε+us & E+

wr,s (blue), and T+
uls & ε+us (dashed

blue/black).

term T+
uls correlates well with E+

ws,l with a right-shifted peak
and the dissipation term ε+us correlates very well with E+

wr,s,
suggesting that the energy cascade is most active during
the late stages of streak breakdown at each scale. Finally,
the cross-correlation of T+

uls with ε+us is also shown, which
shows reasonably good agreement and a left-shifted peak at
τ+ ≈−40.

Figure 7. The formation of a large-scale structure by
small-scale structures: isosurfaces of u+l (red), u+s (blue)
and T+

in,ul (yellow).

Energy Transfer from Small to Large Scales
In order to study the temporal dynamics of small- to

large-scale energy transfer, the time series of T+
in,ul is anal-

ysed and local maximum points are identified. Such an
event is shown in figure 7, where positive isosurfaces of
T+

in,ul are shown in yellow, u+l in red and u+s in blue. Dur-
ing the event, the isosurfaces of T+

in,ul form alongside the
small-scale streaks and precede the growth of the large-
scale streaks and the small-scale streaks subsequently de-
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cay. The full dynamics of such scale interaction events will
be discussed in the presentation.

CONCLUSIONS

Streaks

Wavy 
StreaksVortices

Mean

Energy 
Cascade 
Eddies

Large
SSP

Small
SSP

Streaks

VorticesWavy 
Streaks

Figure 8. Schematic diagram of the two-scale system.

In this work, the temporal dynamics of a near-wall flow
with two integral lengthscales of motion are analysed. The
turbulent production terms, which fuel the self-sustaining
process at each scale, are correlated with the lift-up ef-
fect, while the pressure transport terms are correlated with
streak instability. The cascade of energy from large- to
small-scales is most active during the late stages of streak
breakdown at both large- and small-scales, as seen through
the cross-correlations of inter-scale turbulent transport and
small-scale dissipation. Finally, highly intermittent small-
to large-scale energy transfer events are identified, which re-
sult in the formation of wall-parallel large-scale structures.
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