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ABSTRACT
This paper presents a spectral analysis modal method

applied to a canonical cavity flow at Mach 0.6. In particu-
lar, time-resolved (TR) unsteady surface pressure measure-
ments are synchronized with non-time resolved (NTR) pla-
nar Particle Image Velocity measurements along the cav-
ity midplane. We present a linear multiple-input/multiple-
output (MIMO) frequency-domain model to estimate the
cavity flow system. The model is further used for modal de-
composition via Proper Orthogonal Decomposition (POD)
in the spectral domain. Temporally and spatially coher-
ent structures associated with Rossiter modes are identified.
These results are compared with corresponding POD and
Dynamic Mode Decomposition (DMD) modes obtained us-
ing independent time-resolved PIV measurements, which
show strong similarities in the resulting modes.

INTRODUCTION
Proper Orthogonal Decomposition (POD) (Lumley,

1967), dynamic mode decomposition (DMD) (Schmid
et al., 2010), and resolvent analysis (McKeon & Sharma,
2010) are popular modal analysis tools that provide fun-
damental understanding and knowledge of turbulent flows,
for example to identify coherent structures (Berkooz et al.,
1993), develop a reduced-order model (Pinnau, 2008), or
facilitate flow control. Snapshot POD (Sirovich, 1987) uses
instantaneous independent snapshots of the flow at differ-
ent time instances to decompose a flow field into spatially
orthonormal modes. The velocity field at the times corre-
sponding to those of the snapshots can then be reconstructed
using a linear combination of time-dependent POD coeffi-
cients and the spatial modes.

Note that this version of POD only guarantees spatially
coherent structures, but the temporal dynamics of the flow
field is not captured without time-resolved data. While fea-
sible in simulations, time-resolved data remain beyond the
reach of most current experiments due to either the high
cost and/or limitations of current instrumentation. The ve-
locity field is generally available at a sub-Nyquist rate (∼ 15
Hz), while data at discrete locations (e.g., wall pressure)

are available at time-resolved rates. Hence, current state-of-
the-art experiments often employ variants of stochastic es-
timation (Adrian, 1979) to estimate the velocity field given
statistical information about its relationship to surface pres-
sure. Modified Stochastic Estimation combines stochastic
estimation with POD to estimate the POD temporal coeffi-
cients rather than velocity field itself. A Fourier Transform
provides a frequency domain or spectral version (Tinney
et al., 2006). Deficiencies of these stochastic estimation ap-
proaches include sensitivity to noise and overfitting (due to
a large number of parameters in the estimation). Hence, cur-
rent stochastic estimation approaches fall short of what is
required to obtain a model that is generally suitable for ap-
propriate application of modern modal analysis tools, such
as DMD and resolvent analysis.

The current approach, termed “spectral analysis modal
method (SAMM)” links Spectral LSE from Tinney et al.
(2006) with a Multi-Input/Multi-Output (MIMO) system
based model to circumvent these problems. SAMM pos-
sesses a striking resemblance to the ideas proposed by Lum-
ley concerning the original POD, and recently Towne et al.
(2018) presented an efficient algorithm for applications of
the POD in the frequency domain yielding frequency de-
pendent modes. It should be noted that as originally shown
by Lumley (1967) and George (1988), the POD reduces to
harmonic analysis over directions which are stationary (i.e.,
time); hence applying the POD in the frequency domain is
the proper application when appropriate data are available.
This method exploits our ability to measure the auto- and
cross-correlation functions between spatially (but not time
resolved) flow field data and time- (but not spatially) re-
solved surface pressure data. Here, we transform these mea-
sured functions to the frequency domain using the Discrete
Fourier Transform (DFT) and employ MIMO conditional
spectral analysis methods to construct measured transfer
and coherence functions. The temporally- and spatially co-
herent structures are identified by applying spectral POD
and are compared with the ones obtained from independent
time-resolved measurements obtained subsequently with
TR-Particle Image Velocimetry (PIV). In the current study,
a canonical cavity flow at Mach 0.6, which exhibits strong
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self-sustaining velocity/pressure oscillations, is our targeted
flow and is used to demonstrate the relationship between
the modal shapes detected by different methods in this flow
field. The primary contribution of this work is a proce-
dure to perform POD in the spectral domain without time-
resolved velocity field measurements.

METHODOLOGIES
Experimental Setup

The experiments consist of two parts: the first part is
for SAMM and the second part is time-resolved measure-
ments for validation purpose. The details of the first experi-
mental setup can be found in (Zhang et al., 2017); therefore,
it is only briefly summarized here. Two-component Particle
Image Velocimetry (PIV) is performed to obtain the stream-
wise flow field on center plane of a cavity with L/D = 6
and W/D = 3.85. A schematic of the setup is provided
in Figure 1b. A double-pulse Evergreen Nd:YAG laser
(EVG00200) produces laser pulses at a repetition rate of 15
Hz. The cavity model is instrumented with M = 10 Kulite
unsteady pressure transducers (Figure 1a). For fluctuating
surface pressure measurements, the data are acquired at the
maximum acquisition rate of 204.8 kHz for 15 seconds per
PIV run. The resulting vector resolution is 2.8 vectors/mm.

(a) Location of unsteady pressure sensors

(b) Schematic of 2 component PIV
setup (not to scale)

Figure 1: Schematics of experimental setup.

The time-resolved PIV measurements are achieved by
by a Photonix DM dual-head laser and a Phantom V2012
high speed camera. A 105mm f2.8 Nikon lens with a 532
nm band-pass filter is used in this case. The sampling rate is
16 kHz with an image resolution of 1280×464 pixels, and
a total number of 16000 image pairs are acquired. A 96×
96 to 32× 32 pixels multi-pass scheme with a 75% overlap
is used to calculate the velocity field, resulting in a vector
resolution of approximately 1 vector/mm. All the PIV im-
ages are acquired and processed using DaVis software 8.4.
Multivariate outlier detection (MVOD) (Griffin et al., 2010)

is used as the final post-processing step. The TR-PIV mea-
surements are also performed at other frequencies, i.e., 8
kHz and 20 kHz, no aliasing on the Rossiter modes Rossiter
(1964) are observed.

Multi-Input/Multi-Output System
The flow field is modeled by a MIMO system. In the

current work, the fluctuating surface pressure at different
locations are considered as the inputs, while the 2-D veloc-
ity field is the output as shown in Figure 2. The resulting
velocity field is a summation of the contributions from all
inputs (pressure).

...

U2(t)

Figure 2: MIMO system

By performing a Fourier transform, the MIMO system
is expressed in the frequency domain

U( f ) =
M

∑
i=1

Hi( f )Pi( f ), (1)

where i is the sensor index. However, the transfer
functionHi( f ) is not known without time-resolved velocity
data, so U( f ) cannot be calculated.

An alternative approach is as follows

P∗j ( f )U( f ) =
M

∑
i=1

Hi( f )P∗j ( f )Pi( f ), (2)

2
T

E[P∗j ( f )U( f )] =
M

∑
i=1

Hi( f )
2
T

E[P∗j ( f )Pi( f )], (3)

Gp jU( f ) =
M

∑
i=1

Hi( f )Gp j pi( f ), (4)

where ∗ represents complex conjugate, Gp jU is the cross-
spectrum between pressure and velocity, Gp j pi is the
auo/cross-spectrum matrix of pressure. However, the equa-
tion above still cannot be used directly without time-
resolved data. Noting that the cross-correlation and cross-
spectrum are Fourier-transform pairs,

Gxy( f ) =
∫ +∞

−∞

Rxy(τ)e− j2π f τ dτ, (5)

where Rxy is the cross-correlation between fluctuating sur-
face pressure and the velocity and can be calculated using
non-time-resolved data by shifting the time-delay. It should
be noted that this methodology is essentially equivalent to
the Spectral LSE proposed by Tinney et al. (2006).

The cross-correlation Rpu is defined as

Rpu(τ) =
∫ +∞

−∞

p(t)u(t + τ)dτ. (6)
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However, since u(t + τ) is not known, a time shift modifies
this equation to an equivalent form

Rpu(τ) =
∫ +∞

−∞

p(t− τ)u(t)dτ. (7)

Similarly,

Rpi p j (τ) =
∫ +∞

−∞

pi(t)p j(t + τ)dτ. (8)

Then the cross-spectrum is estimated using a discretized
form of a finite Fourier transform T

Gxy( f ) =
∫ +T/2

−T/2
wRxy(τ)e− j2π f τ dτ. (9)

where w is a window function. Finally, the transfer func-
tions Hi are obtained by solving Equation 4 in the matrix
form.

POD Algorithm
We use the Spectral POD algorithm documented in

(Towne et al., 2018), which is briefly summarized here.

1. For each data block n = 1,2, . . . ,Nb, assemble the data
matrix Q(n) = [q(n)1 ,q(n)2 , · · · ,q(n)N f

], where q(n)k repre-
sents a snapshot and N f is the number of snapshots in
each block.

2. Then using a (windowed) fast Fourier transform,
calculate and store the row-wise DFT as Q̂(n) =

FFT(Q(n)) = [q̂(n)1 , q̂(n)2 , . . . , q̂(n)Nω
]. The column q̂(n)k

contains the nth realization of the Fourier mode at the
kth discrete frequency fk.

3. Assemble a new matrix Q̂ fk ← [q̂(1)k , q̂(2)k , . . . , q̂(Nb)
k ] for

each frequency k = 1,2, . . . ,N f (or at frequencies of
interest).

4. Calculate the matrix M fk ← Q̂∗fk
Q̂ fk .

5. Perform an eigenvalue decomposition M fk =
Θ fk Λ̃ fk Θ∗fk

.

6. Obtain the POD modes Ψ̃ fk = Q̂ fk Θ fk Λ̃
−1/2
fk

and modal

energies Λ̃ fk for the kth discrete frequency.

In the SAMM case, Step 1 is not needed, and the pres-
sure data were down-sampled to 25600 Hz with nfft= 2048.
Pi( f ) is calculated with a Hanning window per snapshot pe-
riod (−1024dt to 1024dt), and U( f ) is obtained from Equa-
tion 1 to form Q̂(n) in Step 2. The total number of blocks is
Nb = 4772 with no overlap. In the case of TR-PIV, the nfft
is set to 1280 with 75% overlap, which results in 47 blocks.

Dynamic Mode Decomposition
The DMD algorithm applied in the current study is

based on the total-least-square DMD (TDMD) in Hemati
et al. (2017), which is robust to measurement noise. The
procedure is summarized here.

1. An operator ADMD is defined as ADMD = Y X†, where
X and Y are data matrices containing snapshots
of flow that are separated by one sample interval
[zzz111,zzz222, · · · ,zzzm−1] and [zzz222,zzz333, · · · ,zzzm], respectively, and
X† denotes the Moore-Penrose pseudoinvese of X .

2. Construct the augmented snapshot matrix z :=
[

X
Y

]
,

compute the SVD of Z as Z = USV ∗, and retain the
first n columns of V , denoting them as Vn.

3. Project X and Y onto Vn basis, getting X̄ = XVn and
Ȳ = YVn.

4. Calculate the SVD of X̄ as X̄ = Ū S̄V̄ ∗.
5. To calculate the eigenvalues and eigenvectors of ADMD

more efficiently, ADMD is projected onto the reduced
POD basis as ÃDMD = Ū∗ȲV̄ S̄−1.

6. We compute the eigenvalues and eigenvectors of ÃDMD
as ÃDMDφ = λφ .

7. The DMD mode corresponding to the DMD eigenvalue
λ is then given by Φ =Uφ

8. The growth rate of the mode is calculated from the
eigenvalue λ as g = log |λ | fs, while the frequency is
f = 6 λ fs/(2π), where fs is the sampling frequency.

RESULTS
Although the auto/cross-coefficient between the pres-

sure signals can be more accurately evaluated using the
longer TR data, it is not beneficial in the current method.
As shown in Figure 3, small differences exist between two
methods. The one calculated from TR and NTR data uses
less samples such that it is a subset of the more converged
result calculated from TR data that have substantially more
samples. This mismatch is natural due to the presence of
noise in the measurements. Because the cross-correlation
coefficient between pressure and velocity has to be calcu-
lated using TR and NTR data and noise existing in the mea-
surements, using a more converged R for the pressure sig-
nals does not result in a better estimation of the transfer
function H( f ) by using Equation 4. Empirically, we found
it is better to calculate Rpu and Rpp in a consistent manner
using TR and NTR data.
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Figure 3: Cross-correlation between 1stand 10th pres-
sure signals using different methods. TR & TR uses
30 million samples, and TR & NTR uses 4772 sam-
ples.

A typical plot corresponding to the cross-correlation
between a local vertical velocity component near the trailing
edge and the pressure signal on the aft wall is presented in
Figure 4. The magnitude of the correlation decreases as the
time delay increases or decreases. However, the coefficient
never decays to zero due to the natural self-sustaining oscil-
lations of the cavity flow. The correlation between local un-
steady pressure and global velocity field are shown in Fig-
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ure 5. Similar analysis at other other locations make it clear
that the high correlation mainly exists along the shear layer
across the cavity opening. Due to the acoustic feedback
phenomenon in the cavity flow, the global cross-correlation
between velocity and pressure at different locations present
a similar wave pattern with a phase shift (time delay).
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Figure 4: Cross-correlation between the local v com-
ponent near the trailing edge (x/D = 6, y/D = 0) and
pressure (10th sensor) on the aft wall.

(a) Sensor 1 (x/D = 0.5,y/D =−1)

(b) Sensor 10 (x/D = 6,y/D =−0.5)

Figure 5: Global cross-correlation between the v ve-
locity component and pressure for τ = 0 at different
locations.The black markers indicate the location of
the pressure sensor.

As shown above, R oscillates, which introduces finite
record length effects in the auto/cross spectral density cal-
culation as the period T is necessarily truncated. The choice
of T represents a compromise between frequency resolution
and random uncertainty. An improper choice of d f may
also result in energy leakage. Because the main interests
of the current study are the strong oscillations, i.e. Rossiter
modes, a choice of 2048dt is selected for T resulting in rel-
atively smooth peaks with 12.5 Hz resolution in the spec-
trum as shown in Figure 6. The dominant Rossiter mode
(2nd) shows a significantly higher amplitude compared with
other modes and broadband fluctuations, which results in a
more clear modal shape in the following discussion.

CPSD

PSD

Figure 6: Cross-spectral density: between local v com-
ponent near the trailing edge (x/D = 6, y/D = 0) and
pressure (10th sensor) on the aft wall; Power spectral
density: pressure from (10th sensor) on the aft wall.
Dashed lines indicate Rossiter frequencies predicted
by St = f L

U∞
= n−α

1/κ+Ma∞/
√

1+(γ−1)Ma2
∞/2

(Heller et al.,

1970).

By using SAMM and SPOD, the flow field dynamics
of velocity seemingly lost in the NTR-PIV measurements
are recovered via this linear model, and the dynamically
important structures are extracted. The rank 1 modal shapes
corresponding to the first four Rossiter frequencies obtained
from SAMM and TR-PIV are compared in Figure 7. Both
modal shapes of u and v exhibit strong wave patterns which
are the characteristics of traveling waves. By comparing
the modes obtained from SAMM to those from TR-PIV,
we observe strong similarities for modes corresponding to
Rossiter modes 2 to 4.

Unlike the spatial POD that distributes energy in the
spatial orthonormal modes, the modes provided in Figures
7e and 7f correspond to a particular frequency. Because
SAMM can only recover the energy in the velocity field that
are linearly correlated with the pressure fluctuations, the to-
tal energy recovered is less than the original total energy.
For Rossiter modes 2 and 3, the energy fraction of the rank
1 mode is approximately 93% and 91%, respectively, which
is also related to the fact that the pressure fluctuations are
dominant in the 2nd and 3rd Rossiter mode. Because the en-
ergy are coupled in velocity and pressure, they present the
same energy signature. For Rossiter modes 1 and 4, the rank
2 mode has a non-negligible amplitude in Figure 7e. This
explains why the two rank 1 mode shapes from SAMM do
not match their respective counterparts from application of
POD of the TR-PIV.

It is also clear that the 1st mode is not well resolved
compared with other modes, which is due to two aspects.
First, the amplitude of the velocity/pressure fluctuations
are relatively small compared to the broadband fluctuations
than for the 2nd and 3rd modes, which affects the signal-
to-noise ratio. In addition, the NTR-PIV data contains less
cycles of the 1st Rossiter mode compared with higher fre-
quency modes. These results in increased level of uncer-
tainty in the correlation between the velocity and pressure
data. This can be potentially improved by increasing the
number of NTR-PIV samples, although this increases ex-
perimental and computational cost. Second, T is 0.08 sec-
onds, which affects the spectral resolution.

For the 2nd Rossiter mode, we observe that the mode
shape is very similar to the cross-correlation map in Fig-
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ure 5. This is because the level of pressure fluctuations of
the 2nd mode has higher amplitude (dominant mode), which
results in a stronger correlation between the velocity and
pressure. Therefore, the correlation between velocity and
pressure for other Rpssiter modes are all below that of the
2nd mode. With a high level of correlation, SAMM can eas-
ily recover the dynamics of the original flow field, i.e., 2nd

and 3rd mode in the current study. Similarly, the 4th mode
has a lower amplitude compared with other modes.

The original TR velocity fields were low-pass filtered
at 8 kHz, and then TDMD was applied on 250 snapshots
with a reduced rank of 80. The resulting DMD modes corre-
sponding to the fist four Rossiter modes are provided in Fig-
ure 8, which exhibit strong similarities to the POD modes
(Figuer 7). However, the modal shapes are not as clear as
the POD modes at the same frequencies. DMD essentially
seeks a linear approximation between the successive snap-
shots similar to SAMM albeit with less data. The oscilla-
tory modes have periodic variations but broadband turbulent
flows cannot be described by a single deterministic mode.
Therefore, the linear mapping of the high level broadband
turbulence introduces noise into the DMD modes. The POD
modes present more clear structures because they are en-
semble DMD modes that provide the optimal basis (Towne
et al., 2018). The modal shapes detected by these two meth-
ods are essentially the same time-spatial coherent structures
in the flow field.

Conclusion
This paper presents an alternative method of spectral

POD to recover the temporal dynamics in the NTR velocity
field of a cavity flow at Mach 0.6 by using the information
from TR fluctuating pressure and NTR velocity field. The
transfer function is estimated between pressure and veloc-
ity, which is computed via DFT of auto/cross-correlation
between pressure and velocity. Then the POD is used
to identify the spatial-temporal coherent structures for the
first 4 Rossiter modes in the cavity flow. Similar to linear
stochastic estimation, good correlation between NTR and
TR data is required to obtain the accurate transfer function
between the inputs and outputs. SAMM recovers the high
frequency (≥ 2nd) modes well compared to the separate
TR PIV measurements in the same cavity flow. SAMM is
fundamentally limited by the linear correlation and, hence,
signal-to-noise ratio of tonal to broadband turbulent fluc-
tuations, which can be potentially improved by acquiring
more data samples. POD and DMD essentially provide the
same dynamically important spatial coherent modes of the
flow field. However, the modal shapes are less clearly ob-
served using DMD due to high level of broadband turbu-
lence. Since TR-PIV is not always feasible, SAMM pro-
vides an attractive alternative method to time-domain LSE.
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(a) TR-PIV, Mode shape of u

(b) SAMM, Mode shape of u

(c) TR-PIV, Mode shape of v

(d) SAMM, Mode shape of v

(e) TR-PIV, Energy distribution of modes

(f) SAMM, energy distribution of modes

Figure 7: POD modal shapes corresponding to the first 4 Rossiter modes.

(a) Mode shape of u

(b) Mode shpe of v

Figure 8: TDMD modal shapes corresponding to the first 4 Rossiter modes.
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