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ABSTRACT
The focus of this study is to analyze the self-similar

scaling approach for decaying isotropic turbulence by com-

paring a Direct Numerical Simulation with theoretical re-

sults. Constraints on the similarity solution are used to

show that the temporal evolution of the length scale set

the exponent of decay, and a functional form for the dissi-

pation scaling parameter is determined without any curve-

fitting to the dissipation data. Collapse of the single time,

two-point triple-correlations are shown, with the scaling pa-

rameter both differing from the classic analysis and being

completely determined from the length scale and double-

correlation scaling.

BACKGROUND
A statistical understanding of decaying (unforced)

isotropic turbulence begins with the scalar equation for the

evolution of the two-point correlation function F(r, t) devel-

oped by von Kármán & Howarth (1938) as

∂F

∂ t
=

1

r4

∂
∂ r

[

r4

(

K +2ν
∂F

∂ r

)

]

, (1)

where F(r, t) = 〈u1(x, t)u1(x+r, t)〉 is the two-point double-

correlation, the angle brackets 〈·〉 represent an ensemble

average, and K(r, t) = 〈u2
1(x, t)u1(x+ r, t)〉 is the two-point

triple-correlation, dependent on the spatial separation and

time.

Equation 1 is composed of two scalar functions that de-

pend on two scalar variables, so a similarity solution would

enable an understanding of the temporal dependence of the

appropriate scaling parameters separate from the spatial de-

pendence of the correlation function. The usual approach

to validating similarity via experiments involves first mea-

suring fluctuating velocities in grid turbulence at different

downstream locations, then invoking Taylor’s hypothesis to

transform temporal differences to spatial differences. An-

other methodology for validation is to utilize data from Di-

rect Numerical Simulations (DNS), which provides full res-

olution of the spatial, temporal, and velocity information

within the computation domain.

The experimental analysis of Batchelor & Townsend

(1948) and later investigations by Comte-Bellot & Corrsin

(1966) tested the theoretical findings of Batchelor &

Townsend (1947), in which it was found that the inverse

of the double correlation at zero separation, u−2, and the

square of the Taylor microscale, λ 2 = 2u2/〈du/dx〉2 , scale

linearly in time. More recent experimental studies (Antonia

et al., 2003; Lavoie et al., 2007) have investigated the trans-

port of structure functions 〈(δq)2〉 ≡ 〈(δu)2〉+ 〈(δv)2〉+
〈(δw)2〉 and found agreement with the classical scaling for

the Taylor microscale of λ 2 ∼ t, but determined that the

decay of u2 does not approach t−1 for finite Reynolds num-

bers. These findings agree with the studies of George (1992)

and George & Wang (2009), which found that
〈

u2
〉

decays

as tn with n <−1. Furthermore, George (1992) and George

& Wang (2009) relaxed the constraint on the triple correla-

tion scaling parameter, finding that K should be scaled with

u3/Reλ , where Reλ = uλ/ν is the Taylor-scale Reynolds

number and u = 〈u2
1〉1/2, which differed from the classic

Batchelor & Townsend (1947) scaling of u3. This up-

dated approach was utilized by Antonia et al. (2003) and

Lavoie et al. (2007) in their study of structure functions and

found agreement with the conclusions of George (1992) and

George & Wang (2009) for the double and triple correla-

tions.

WHAT WE FIND FROM SIMILARITY
The self-similar forms for the scaling parameters in

decaying isotropic turbulence have been derived and dis-

cussed in Batchelor & Townsend (1947), George (1992) and

Lavoie et al. (2007). The two-time solutions from Byers

et al. (2017) utilized the process outlined in George (1992)

and reduce to the subsequent single-time results as a spe-
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cial case. Utilizing the notation from Byers et al. (2017),

the two-point double- and triple-correlations are proposed

to have the following similarity forms:

F(r, t) = Rs(t) f (η) (2a)

K(r, t) = Ts(t)k(η) (2b)

η =
r

δ (t)
, (2c)

where Rs(t) and Ts(t) are temporally-dependent dimen-

sional scaling parameters, f (η) and k(η) are non-

dimensional similarity functions, η is a non-dimensional

spatial separation between two points x and x+ r, and δ (t)
is a temporally-evolving length scale.

Substituting equations 2a-2c into equation 1 and rear-

ranging produces the following scaled equation:

[

δ 2

νRs

dRs

dt

]

f −
[

δ
ν

dδ
dt

]

η
d f

dη
=
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δTs
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η4 d f
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)

. (3)

This form of the Von-Karman-Howarth equation has all

the temporally-dependent dimensional terms contained in

brackets, while the terms outside are non-dimensional vari-

ables and scaling functions. For equilibrium similarity to

hold, the bracketed terms must evolve in the same manner

or be identically zero, since no term in equation 1 should

become more relevant than another throughout the range of

equilibrium similarity (George, 1992). The bracketed terms

therefore all have the same temporal dependence under this

constraint of equilibrium similarity:

[

δ 2

νRs

dRs

dt

]

∼
[

δ
ν

dδ
dt

]

∼
[

δTs

νRs

]

∼ [2] = constant, (4)

where ’∼’ is utilized to represent a similar temporal depen-

dence. With equation 4 indicating all bracketed terms are

constants, they can be integrated to produce the following

functional forms for the scaling parameters:

δ 2 = λ 2 = 2Aν(t − t0) (5a)

Rs = u2 = R0(t − t0)
B
2A (5b)

Ts ≡
u3

Reλ
=

CνR0√
2Aν

(

t − t0
)

B
2A
− 1

2 , (5c)

where t0 and R0 are constants of integration, and A, B, and

C are constants that constrain the similarity behavior of

the Von-Karman-Howarth equation. These similarity con-

straints are defined as:

A =
λ
ν

dλ
dt

, B =
λ 2

νu2

du2

dt
, C =

λTs

νu2
. (6)

Note these constraints are exactly those obtained from the

similarity analysis in equation 4 with the length scale cho-

sen as the Taylor microscale and the double correlation

scale chosen as u2, while the triple correlation scale Ts has

been determined from the scaling analysis and does not

have the freedom to be specified independently.

The equilibrium similarity analysis requires that the

parameters in equation 6 must be constant for any given

Reynolds number. In equation 5c, C is immediately de-

termined from comparing that functional form with the de-

cay functions for both u3 =
〈

u2
〉3/2

and λ , giving C = 1.

Note too that equation 5c is not simply the 3/2 power of u2

but also contains an explicit Reynolds number dependence,

contrasting the classic approach of Batchelor & Townsend

(1947) in which it was assumed that K(r, t) is scaled with u3.

The result of this analysis matches the prediction of George

(1992) and George & Wang (2009), where their analysis

of the spectral equations found a Reynolds number depen-

dence in the spectral transfer scaling parameter, analogous

to this triple correlation in the physical domain.

In decaying isotropic turbulence, the dissipation can be

related to the kinetic energy of the flow:

d

dt

(

3

2
u2

)

=−ε. (7)

Combining equations 5b and 7 results in a dissipation scal-

ing parameter:

εs =−3

2

R0B

2A

(

t − t0
)

B
2A
−1

. (8)

Note that every term in equation 8 is determined from

the previous scaling relations, meaning that the dissipation

scaling is uniquely determined from the length scale and

double-correlation scaling. The isotropic relation

ε = 30ν
u2

λ 2
(9)

can be combined with equation 8,

−3

2

R0B

2A

(

t − t0
)

B
2A
−1

= 30ν
R0(t − t0)

B
2A

2Aν(t − t0)
, (10)

which, upon canceling terms, results in a predicted value of

B =−20. Note the coefficient of 30 in equation 9 is due to

the Taylor microscale having a factor of 2 in its definition.

This theoretical value of B can further inform the value of A

through the power in equation 5b, where B/2A →−1 in the

infinite Reynolds number limit. This implies that A → 10 as

Re grows infinitely large.

RESULTS AND CONCLUSIONS
Three DNS calculations of decaying isotropic turbu-

lence are performed. The number of grid points N = 15363

and periodic box size are fixed, while the Reynolds number

is varied by changing the initial integral length scale. The

initial condition is generated using a synthetic turbulence

spectrum (Passot & Pouquet, 1987) and is allowed to decay

for approximately two eddy-turnover times before correla-

tion functions are evaluated. That this delay allows for the

development of sufficiently-equilibrated turbulence is justi-

fied in the next section. The Taylor-scale Reynolds number
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Table 1. Parameters extracted from each DNS case.

Case N Reλ A B Sym.

1 15363 36.5 7.047 -19.910 ▽

2 15363 41.5 8.194 -19.923 ⋄
3 15363 55.9 8.412 -19.775 △

at the time equilibrium is achieved (A,B become constant)

is listed for each case in table 1.

The incompressible Navier-Stokes equations are

solved using an energy-conservative, semi-implicit, iter-

ative algorithm for low Mach number flows (Desjardins

et al., 2008; MacArt & Mueller, 2016), in which the mo-

mentum equation and a Poisson equation for the hydrody-

namic pressure are updated using a fractional-step scheme

(see Kim & Moin, 1985). Spatial derivatives are obtained

using second-order central differences on a staggered grid,

in which velocity components are located at cell faces and

the pressure is located at cell centers. The grid resolves the

initial Kolmogorov scale to within a factor of two, mean-

ing that the spatial resolution of the Kolmogorov scale im-

proves with time. The initial resolution is generally suffi-

cient for DNS of decaying isotropic turbulence (Yeung &

Pope, 1989).

Evaluation of the Scaling Parameters

The cases tested are listed in table 1, and it is apparent

that B =−20 for all flows, while A trends towards 10 as the

Reynolds number increases. Figure 1a shows the evaluation

of similarity constraints A and B in equation 6, indicating a

temporal lag of nearly two eddy turnover times between the

start of the simulation and the equilibrium decay where the

constraints approach constant values. The scaling functions

in equations 5a - 5c as well as equation 8 will then be eval-

uated only after this equilibrium decay is achieved.

The values for A in each case are then applied to the

fits for λ 2, shown in figure 1b. The linear behavior of λ 2

is apparent in each test case, conforming to the predictions

from classic results (Batchelor & Townsend, 1947; George,

1992). Note that the higher Reynolds number achieved a

better fit between the theory and data, which is likely due to

equilibrium conditions holding over longer periods of time.

The decay exponent for u2, B/2A, is then immediately

determined, for A has been calculated and it was shown that

B = −20. This means the decay exponent is not a fitting

parameter but instead is uniquely determined by the evolu-

tion of the length scale. As shown in table 1, the Reynolds

number dependence of A therefore means the decay rate is

asymptotically flow independent for high Reynolds num-

bers at best and not a universal constant, which agrees with

the prediction of George (1992). The double-correlation is

then shown to follow the functional form of equation 5b in

figure 2a. As previously discussed, the triple correlation can

immediately be determined by setting C = 1, with figure 2a

demonstrating the agreement between data and theory. It

should not be surprising that the triple scale and equation

5c match so well, since they are both uniquely determined

from the Taylor microscale and the double correlation scale.

Additionally, the dissipation scaling is compared to the

data in figure 2b. The dissipation was calculated directly

from the integrated spectrum, shown in black,

ε = 2ν
∫ ∞

0
k̃2E(k̃)dk̃ (11)

where k̃ is the wavenumber and E(k̃) is the scalar energy

distribution, found by integrating the Fourier transform of

the autocorrelation of u over spherical shells. This is com-

pared to the modeled dissipation

ε = 30ν
u2

λ 2
(12)

which is shown in red in figure 2b. The agreement with the

dissipation scaling of equation 8 is expected, as the equilib-

rium similarity analysis indicated that the dissipation scal-

ing is a direct result of the length scale and double correla-

tion scale.

Overall, the agreement between the derived scaling pa-

rameters and the DNS results demonstrate that the equilib-

rium similarity analysis is appropriate for determining the

similarity forms. In the next section, the double- and triple-

correlation functions are analyzed after sufficiently equili-

brated turbulence is obtained, indicated as the point in time

at which A and B reach approximately constant values. This

point appears to be approximately two initial eddy-turnover

times.

Collapsing the Double- and Triple-Correlation
Functions

The scaling parameters obtained in the previous sec-

tion are used to collapse the double- and triple-correlation

functions after t/ts ≈ 1.8. The double correlation, F(r, t), is

shown in figure 3a for Case 2, where both the spatial and

temporal dependence is apparent. The profiles are scaled

by u2 and λ in figure 3b, which demonstrates the expected

spatial and temporal collapse.

Of greater interest and new to these authors is the

collapse of the triple correlation from the developed scal-

ing parameter in equation 5c. Measurements of the triple

correlation have been shown in Stewart (1951); Stewart &

Townsend (1951), who used an analog integrator to extract

the measurement. No collapse in the decay was shown, but

the scaling also assumed a simple
(

u2
)3/2

factor. Inspec-

tion of equation 5c shows that the exponent will approach

−3/2 only if −B/2A → −1. The results summarized in

table 1 indicate this may occur as the Reynolds number

grows infinitely large, as the similarity constraint B should

remain a constant −20 while A appears to approach 10 as

the Reynolds number increases. This would explain why

the triple correlation profiles of Stewart (1951); Stewart &

Townsend (1951) did not collapse, since their experiment

was not at an infinitely high Reλ .

Figure 4 shows both the unscaled and scaled K(r, t) for

all three cases. Each scaled case collapses to a nearly uni-

versal profile in figure 4b, but only within the case. For

the increasing Reynolds number, the overall magnitude of

the plot is growing. While the intra-case collapse justifies

u3/Reλ as the appropriate scaling parameter and demon-

strates that the evolution of the length scale sets the decay

exponent, the inter-case Reynolds number dependence is

not explained. It is possible that the similarity constraint

C evolves with Reynolds number, just as A does. However,
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further investigation is needed to explain what dependence

it may have. Since the triple correlation is zero at r = 0,

there is no straightforward parameter or scale to use in eval-

uating the growth rate of C with Reλ .

As a final note, the spreading of the triple-correlation

tails observed in figure 4 is likely due to the finite computa-

tional domain size. Future work will explore this possibil-

ity using similar-Reynolds number DNS data obtained on

larger computational domains.
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Figure 1. Calculations from equation 6 of the similarity constants A and B shown in � and ◦ symbols, respectively, in (a).

Time is non-dimensionalized by initial eddy turnover time ts = 3u2/2ε evaluated at the start of the simulation. Data presented

is from case 2. The growth of λ 2 for all DNS cases is shown in (b) for later times when A and B approach a constant value.

Equation 5a is shown as a dotted line for each data set.
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Figure 2. Temporal decay of the double-correlation scale u2, shown in hollow symbols, and the triple-correlation scale

u3/Reλ , shown in gray symbols in (a). Dotted lines follow equation 5b for u2 and 5c for u3/Reλ . Dissipation is shown in

(b) and plotted with the relation of equation 8 (dotted line). Also shown is the calculated ε = 30νu2/λ 2 in red. All data

presented is from case 2.
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Figure 3. Unscaled (a) and scaled (b) double correlations. Increasing time corresponds to decreasing magnitude in (a), while

profiles collapse in (b) under the scaling. All data is Case 2, while Cases 1 and 3 show similar behavior.
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3 in dotted lines (highest magnitude). The scaling works by accounting for the decreasing Reynolds number in each simulation

but not the differences in Reynolds number between cases, which remains a point of ongoing investigation.
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