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ABSTRACT

4D Variational data assimilation has been used in nu-
merical weather prediction for some time. The technique
has been adopted by the fluid dynamic community recently,
and has been applied in, e.g., inflow condition generation
for large eddy simulations, velocity fields reconstruction
from measurement data, and sensor placement (see, e. g.,
Gronskis et al. (2013); Foures et al. (2014); Mons et al.
(2016, 2017)). These studies, however, are mostly limited
to 2D or steady flows. The technique has not been fully ex-
amined in 3D turbulence where multi-scale interactions and
the instantaneous vortical structures dominate. In this pa-
per, we investigate the reconstruction of 3D fully developed
turbulent velocity fields using the 4D variational (4DVar)
method. To assess the reconstruction of non-local struc-
tures, minimum volume enclosing ellipsoids (MVEEs) are
introduced. The comparisons between the MVEEs for the
instantaneous non-local structures show that 4DVAR can re-
produce the locations, orientations and sizes of non-local
structures with good accuracy towards the end of the opti-
mization horizon. The relative displacement of the centers
of the MVEEs is about 20% of the length of the major axis.
The reconstructed structures tend to be somewhat smaller,
with the most probable ratio of the major axes being 80%.
The alignment between the structures, on the other hand, is
excellent, with more than 90% MVEES aligned within 26°
in the major axis direction.

INTRODUCTION

Four dimensional variational (4DVAR) data assimila-
tion uses available experimental or observational data to im-
prove computational model predictions, by solving a con-
strained optimization problem. Spatial as well as temporal
data are assimilated into the model by minimizing the dif-
ference between the model prediction and the data. In re-
cent years, 4DVAR has been applied to fluid dynamic prob-
lems (Hayase, 2015). Gronskis et al. (2013) applies the
variational method to reconstruct the inflow and initial con-
ditions for two-dimensional (2D) mixing layers and wake
flows behind a cylinder. Mons et al. (2016) considers 2D
wake flows, where a comprehensive comparison between
different DA schemes is presented. RANS models are in-
vestigated with variational methods in (Foures et al., 2014).
In D’adamo et al. (2007), Artana et al. (2012), and Protas
et al. (2015), variational methods are coupled with reduced
order models based on Galerkin truncation. Variational

methods are also used in state estimation in the context of
flow control (Bewley & Protas, 2004; Chevalier et al., 2006;
Colburn et al., 2011), to extrapolate experimental data in
a dynamically consistent way (Heitz et al., 2010; Combes
et al.,2015) and to obtain optimal sensor placements (Mons
et al., 2017). A list of recent works on DA is tabulated in
Mons et al. (2017)). However, few studies have examined
the ability of 4DVAR to reconstruct instantaneous structures
in 3D turbulent fields. In this paper, we consider a homo-
geneous fully developed Kolmogorov flow in a 3D periodic
box. It is assumed that a time sequence of velocity data are
given on a set of grid points. 4DVAR is employed to re-
construct the initial velocity field such that the velocity at
later times matches given measurement data. The time se-
quence of velocity fields computed from the initial field are
compared with the ‘true’ velocity fields. The objective is
to ascertain how well the instantaneous small scale velocity
fields can be reconstructed.

To evaluate the reconstruction of small scale non-local
structures, it is important to quantify the geometry of the
structures. The morphology of non-local structures have
long been described with visualization. Great efforts have
been made in recent years to develop methods for quanti-
tative description, using curvatures, curvelets and angular
spectra, among others (Bermejo-Moreno & Pullin, 2008;
Yang & Pullin, 2011; Leung et al., 2012). These methods
provide very detailed quantitative descriptions of the struc-
tures. However, they focus on the intrinsic geometry; the
information about locations, orientations and sizes of the
structures sometimes is missing, which is important when
we compare the geometry in two different fields. We pro-
pose to use minimum volume enclosing ellipsoids (MVEEs)
to describe the geometry of a nonlocal structure, and use
MVEE trees where the structures are highly non-convex.
MVEE is used widely in areas such as statistical estimate,
cluster analysis and image processing (Todds, 2016). Our
results demonstrate that MVEEs and MVEE trees are use-
ful tool for the analysis of the non-local geometry in turbu-
lence.

PROBLEM SETUP

We assume the velocity on a set of spatial locations
x € Q from a time sequence of 3D unsteady velocity fields
v(x,) (x € B) are known over a time period 7 € [0, 7], where
B is the 3D periodic box. The known velocity, denoted as
Fv(x,t), serves as the ‘measurement data’. .% is a filter
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that extracts the velocity for x € Q. Let u(x,t) be a so-
lution of the Navier-Stokes equations (NSEs) with initial
condition u(x,0) = ¢(x). The goal is to reconstruct the
initial velocity field ¢ (x) and u(x,?) for t < T, such that
u(x,?) agrees with v(x,) for x € Q. The reconstruction is
conducted using the four-dimensional variational method,
where we define a cost functional to quantify the difference
between u(x,?) and the measurement data:
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where T is the optimization horizon. The initial field ¢ (x)
is found from a constrained optimization problem in which
J is minimized subject to the constraint that u(x, ) is the so-
lution of the NS equation given ¢ (x) as the initial condition.
Using the adjoint method, the optimal solution is found by
solving the optimality system:

N(@u)=—-du—u-Vu—Vp+vViu+£f=0, (2)
with V-u =0, u(x,0) = ¢(x), and
—9E—u-VE4+Vu-E+Vo—VVWE-F=0, (3

with V- & =0, §(x,T) = 0. The forcing term F in Eq. (3)
is
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where .7 T is the adjoint operator of .% . The optimality sys-
tem is closed by DJ /D@ = 0 where DJ /D@ is the gradient
of J with respect to @, given by
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The optimality system is solved iteratively with the non-
linear conjugate gradient method until J is less than a small
tolerance.

RESULTS AND DISCUSSIONS

For a given set of measurement data, an ensemble with
11 realizations of ¢ (x) and corresponding u(x,7) (¢ € [0,7T7])
are computed for 7 = 0.47; and 2 realizations for 7 =
0.577. Each realization consists of a time sequence of ve-
locity fields. In all cases, 1283 grid points are used. The
statistics of @ and u(x,r) are calculated from the ensemble.
For the cases considered in this paper, the measurement data
ZFV(x,t) contain only the large scale components of v(x,1),
given by the first a few Fourier modes of the latter. v is
obtained from a direct numerical simulation (DNS). There-
fore, u(x,7) (including u(x,0) = ¢(x)) can be viewed as a
reconstruction of v(x,7) based on partial data .Z#v. u(x,t)
is compared to v(x,7) to ascertain to what extent the recon-
struction captures the small scale instantaneous structures
in v. As a reference, the energy spectrum E (k) of @(x) is
shown in Fig. 1, which shows that the energy spectrum of
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Figure 1. The energy spectrum E(k) of ¢ (lines) com-
pared with DNS data (solid circles). The measurement data
contain the Fourier modes with wavenumber up to the value
marked by the vertical line.

¢ is reconstructed satisfactorily, although some discrepancy
is observed at small scales.

To illustrate the reconstruction of instantaneous struc-
tures, Fig. 2 compares the contours of an instantaneous tar-
get vorticity field to its reconstruction. The two figures dis-
play high level of similarity. In particular, the peak values
are close to each other, and are observed at about the same
locations. Therefore, Fig. 2 demonstrates qualitatively the
ability of 4DVar to reconstruct instantaneous structures. To
quantitatively assess the similarity between the contours (or
the isosurfaces in 3D), MVEEs are used following the fol-
lowing procedure.

In step one, the set &7 of the grid points where cer-
tain threshold condition is satisfied are extracted. &2 usu-
ally consists of a number of disjoint regions. Each disjoint
region is defined as a nonlocal structure.

In step two, individual structures in & are isolated
from others. It is accomplished by using a clustering algo-
rithm called DBSCAN (Ester et al., 1996; Schubert et al.,
2017). The algorithm is based on the definition of ‘neigh-
bors’. A neighbor of point p is a point whose distance to
p is less than a given small value €. A point with fewer
than n, neighbors is ‘noise’. A cluster is defined by the fol-
lowing rule: the neighbors of a non-noise point p are in the
same cluster as point p. Starting from point p, the ‘neigh-
bors’ of p in &2 are first identified, the above rule is then
applied recursively until all the points identified are noise.
This identifies the cluster containing p. The same process is
then repeated for other non-noise points. For more details
of the DBSCAN algorithm, the readers are referred to Ester
et al. (1996).

In step three, the MVEE for each structure is calcu-
lated. Note that, mathematically, an ellipsoid is defined by
a symmetric positive definite matrix £ and a vector c. The
eigenvectors and eigenvalues of E specifies the orientations
and lengths of the axes of the ellipsoid. ¢ specifies its cen-
ter. The volume of the ellipsoid is proportional to the de-
terminant of E!/ 2, detE!/2. Let P be the set of points p;
(i=1,...,N) in a structure. The MVEE of the structures is
then given by the optimal E and c that minimize detE 172,
subject to the constraints

(pl —<"E N (pi—e)<1, VpeP. (6)

The constraints make sure that p; is inside the ellipsoid,
so that the ellipsoid encloses the structure. This mini-
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Figure 2. Instantaneous distributions of & = (@;@;)"/? on
a plane perpendicular to the z axis. Left: from a target field;
right: from the corresponding reconstructed field.

mization problem is solved with the Khachiyan algorithm
(Khachiyan, 1996; Todds, 2016).

The fourth (and last) step establishes the correspon-
dence between a structure in the target field and its recon-
struction in the reconstructed field. The above three steps
are applied to both the reconstructed and the target fields,
yielding two groups of MVEEs. The following procedure
is then used to identify the corresponding structures. The
structures in the target field are first ordered into a list in the
descending order of their sizes, where the size of a structure
is defined as the number of grid points in the structure. Let
T be a structure in the list. The structure .y in the re-
constructed field whose distance to .7 is the minimum is
then identified. If .7y is not unique, the one largest in size
is chosen as .%p. .Y is taken as the reconstruction of .77.
S and .Sy are called the matching structures.

The matching structures and corresponding MVEEs
obtained this way are then compared in terms of the rel-
ative displacement, alignment, and relative sizes, among
others. The instantaneous vortical structures in u(x,7) and
v(x,t) are compared this way, and the results are shown
in Fig. 3. The vortical structures are defined as domains
where |@| is three times larger than its mean value (the
flow fields are first filtered with a Gaussian filter with length
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Figure 3. Top: the probability distribution of the distance
between the centers of the MVEEs in the major axis di-
rection normalized by the length of the major axis of the
MVEE in v(x,7) for t = T with T = 0.47;,. Middle: the
probability distribution of the cosine between the major
axes of the MVEEs. Bottom: the probability distribution
of the ratio of the lengths of the major axes of the MVEEs.

scale A = 10Mmk). The top panel of Fig. 3 shows the prob-
ability distribution of the relative displacement between the
centers of the MVEESs found in u(x,?) and v(x,#), normal-
ized by the length of the axis. That is, d. = |(c! —cP)-el|
and / is the length the major axis of the MVEE in the tar-
get field, where superscripts T and D represent the target
field and the reconstructed field, respectively, and ey rep-
resents the major axis direction. The result (calculated at
t =T for T = 0.47;) shows that, in more than 60% cases,
the displacement of the two MVEEs is less than 10% of the
length of the axis, and in more than 85% cases, the displace-
ment is less than 20%. The middle panel of Fig. 3 plots the
probability distribution of the cosine of the major axes of
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the two MVEEs found in u(x,?) and v(x,?). Perfect align-
ment occurs when the cosine is unit. The figure shows that
the orientations of the two structures align nearly perfectly,
with the cosine is larger than 0.9 (with the angle smaller
than 26°) in more than 90% cases. Finally, the bottom panel
plots the probability distribution of the ratio of the lengths
of the major axes. The result shows that the reconstructed
MVEE:s tend to somewhat smaller than the target MVEEs.
The most probable ratio is 80%. About 60% ratios are be-
tween 80~ 100%, which demonstrates high probability of
good agreement too.

CONCLUSIONS

The 4DVar method has been used to reconstruct instan-
taneous non-local structures in 3D turbulent fields from in-
complete velocity data. Minimum volume enclosing ellip-
soids (MVEES) are used to characterize the irregular shapes
of the structures. Results on the alignment, relative dis-
placement of the MVEEs, and the ratio of the axis lengths
show that the vortical structures in the reconstructed fields
agree well with those in the true fields. More detailed com-
parison will be presented in the future, including the time
evolution of the structures, the reconstruction of the non-
local structures in the subgrid-scale energy dissipation field
and the strain rate field.
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