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ABSTRACT
Local linear stability analysis as well as Fourier trans-

form and proper orthogonal decomposition are applied to
a self-similar turbulent boundary layer on a flat plate with
strong adverse pressure gradient to identify coherent struc-
tures. The modal analysis is based on data from direct nu-
merical simulations. Coherent structures are identified at
the wall-normal position that coincides with an inflection
point in the streamwise mean velocity profile. It is found
that these coherent structures are governed by broadband
Kelvin–Helmholtz instabilities, which are linearly unstable
for a certain self-similar frequency range, leading to spa-
tial amplification in streamwise direction before they decay
downstream.

A very particular challenge is faced due to the lim-
ited time length of the dataset compared to the character-
istic timescales of interest. Likewise, the spatial extent
in streamwise direction limits the large observable wave-
lengths of interest. This issue is coped with by applying a
Fourier transform in time combined with subsequent proper
orthogonal decompositions in streamwise and spanwise di-
rection to extract the statistically most correlated and coher-
ent modes in the turbulent boundary layer.

INTRODUCTION
Turbulent boundary layers (TBL) in adverse pressure

gradients (APG) are highly relevant in engineering flows
such as airfoils. They are responsible for the additional in-
crease of drag related to the significant growth of boundary
layer thickness.

Direct numerical simulations (DNS) have been con-
ducted on a flat plate for a strong APG TBL at self-
similar conditions (Kitsios et al., 2017). The Reynolds

numbers based on the displacement thickness δ1 in the
self-similar domain is Reδ1

= 22200 to 28800. The
nondimensional streamwise pressure gradient parameter
B = δ1 (∂ p/∂x) / τw, with streamwise pressure gradi-
ent ∂ p/∂x and wall shear stress τw, was set to B = 39 to
simulate a strong APG close to the verge of separation.

Fjørtoft’s theorem states that a necessary condition for
the occurrence of Kelvin–Helmholtz (KH) instabilities is
the existence of an inflection point in the streamwise base
velocity profile that is simultaneously accompanied by a
maximum of spanwise vorticity (Schmid & Henningson,
2012). For the strong APG an inflection point satisfying
Fjørtoft’s criterion can be found at y/δ1 = 1.1, as marked in
Fig. 1 in the streamwise mean velocity profile.

An examination of the Reynolds stresses further hints
at the action of a KH instability mechanism. The spanwise
turbulent shear stress u′v′ as well as the the streamwise tur-
bulent normal stress u′2 peak around y/δ1 ≈ 1.1 (not shown
here). At this position the inflection point is located. Further
studies additionally support this notion and suggest that the
outer region of the boundary layer can be regarded as a free
shear layer when a strong APG is present (e.g. Kitsios et al.
(2017); Schatzman & Thomas (2017); Harun et al. (2013)).

Since the range of turbulence scales is in general very
large, particularly in high Reynolds number flows, it is dif-
ficult to ‘cleanly’ extract these coherent structures. The
goal of this paper is to present a modal analysis approach
that identifies the coherent structures inside the boundary
layer. A local linear stability analysis (LSA) is performed
that provides the eigenmodes of the mean flow. The results
are compared to the structures extracted directly from the
snapshots of the flow field by a combination of a Fourier
transform (FT) in time and proper orthogonal decomposi-
tions (POD) in space.
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Figure 1: Mean velocity profile of the stream-
wise component u/Ue and modeled eddy viscosity
νt/(Ueδ1) as a function of wall-normal coordinate
y/δ1

METHODS & DATA ANALYSIS
Coherent structures can be described by a triple decom-

position (Reynolds & Hussain, 1972). Let q(x, t) = [u, p]>

be the summarized vector of the flow velocity vector u and
the pressure p. q can then be decomposed by q(x, t) =
q(x)+ q̃(x, t)+q′′(x, t), where q is the time-averaged mean
part, q̃ is the coherent part and q′′ is the stochastic part.

Linear stability analysis
The coherent part of a parallel turbulent flow can be

modeled by a local LSA, at least when the coherent struc-
tures are constituted by linear eigenmodes. The LSA of tur-
bulent flows is based on the Navier–Stokes equations of the
coherent fluctuation q̃ linearized around the mean flow q
(Reynolds & Hussain, 1972):

∂ ũ
∂ t

+ ũ ·∇u+u ·∇ ũ =−∇p̃
ρ

+∇ · (ν (∇+∇
>) ũ)

−∇ · ũ′′u′′ (1)

∇ · ũ = 0. (2)

For the solution only normal modes are used as an ansatz
of the form q̃(x, t) ∝ q̂(y)ei(αx+β z−ωt)+ c.c. Here, x is the
streamwise, y is the wall-normal and z the spanwise coor-
dinate. α and β denote the angular streamwise and span-
wise wavenumbers, respectively, and ω denotes the angu-
lar frequency. q̂ is the complex amplitude. The spanwise
wavenumber is set to β = 0 since it is later determined that
most of the coherent energy is contained at β = 0 and other
very low spanwise wavenumbers. By specifying a range of
frequencies ω , an eigenvalue problem for each frequency
is obtained. The solutions provide the eigenmodes with
their respective streamwise wavenumbers αr and convec-
tive growth rates −αi. The discretized eigenvalue prob-
lem is solved by using a Chebyshev spectral collocation
method similar to Khorrami et al. (1989), but implemented
for Cartesian coordinates and a spatial analysis. The mean
flow profile is extended with constant value into the farfield
to y/δ1 = 50 and homogeneous Dirichlet conditions for the
velocities at the wall and in the farfield are imposed. For the
pressure, homogeneous Neumann conditions are set at the
wall and in the farfield.

Equations 1 and 2 are not closed since ũ′′u′′ is un-
known. This term describes the interaction between co-
herent and stochastic field due to the perturbation of the
stochastic Reynolds stresses by a coherent wave. This in-
teraction can be modeled with a Boussinesq approximation,

ũ′′u′′ =−νt(∇+∇
>)ũ, (3)

in which only the unknown eddy viscosity νt needs to be
determined. Here, the eddy viscosity is obtained via a
least-square fit over the turbulent Reynolds stress tensor and
mean strain rate (Ivanova et al., 2013). The calculated eddy
viscosity peaks around the inflection point and reaches close
to the wall (see Fig. 1).

Empirical mode decomposition
A typical approach to extract broadband coherent

structures directly from the snapshots is to apply the
frequency-domain (or wavenumber-domain) spectral POD
as originally proposed by Lumley (1967). In essence,
the spectral POD is based on the correlation of temporal
(or spatial) Fourier coefficients at a given frequency (or
wavenumber). These Fourier coefficients are obtained by
segmenting the complete dataset into a number of subsets
where each segment is assumed to be a statistically inde-
pendent realization of the flow. In the present dataset, any
segmentation in time (or space) prior to conducting a FT
in order to facilitate a spectral POD would be detrimen-
tal to the lowest resolvable frequency (or lowest resolvable
wavenumber) which is why this approach is not followed
here. Instead, the following four main steps are performed
as sketched in Fig. 2. The steps comprise 1) transforming
the snapshots into self-similar coordinates, 2) applying a
FT in time, 3) applying a classical snapshot POD (Berkooz
et al., 1993) on the temporal Fourier coefficients in stream-
wise direction and 4) applying a snapshot POD on the lead-
ing x-POD mode in spanwise direction.

In the first step, all variables are nondimensionalized
by the length scale δ1, the velocity scale Ue (correspond-
ing to the maximum outer velocity at the upper end of
the boundary layer) and the time scale δ1/Ue, rendering
the flow self-similar. If not emphasized otherwise within
the text, all mentioned quantities are nondimensional, e.g.
when a frequency or wavelength is discussed, the nondi-
mensional frequency or nondimensional wavelength is im-
plied. Dimensional quantities within the text are stated ex-
plicitly.

In the second step, a FT in time is applied to the
snapshots. From the obtained temporal Fourier coeffi-
cients, only the nondimensional frequencies at the lower
end of the resolvable spectrum are considered, ranging from
f δ1/Ue = 0.19 to 1.47, since these contain most of the en-
ergy. Furthermore, at every cross-section along x, all data
points (y/δ1, z/δ1) are discarded that do not intersect with
the (y/δ1, z/δ1)-coordinates given by the most downstream
cross-section at the end of the domain.

In the third step, a POD is performed on the tempo-
ral Fourier coefficients. The POD provides energy-optimal
modes in which the temporal Fourier coefficients at a con-
sidered frequency correlate most optimal in x-direction.
The results show that the leading mode is dominant com-
pared to all remaining modes at a fixed frequency. At
the lowest resolvable frequency f δ1/Ue = 0.19 the lead-
ing mode contains almost 40% of the energy (for this
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Figure 2: Schematic of empirical FT-POD analysis: 1) transforming snapshots into self-similar coordinates, 2)
apply FT in time t to obtain temporal Fourier coefficients, 3) apply POD in streamwise direction x on temporal
Fourier coefficients, 4) apply POD in spanwise direction z/δ1 on leading x-POD mode

Fourier coefficient), while at the highest frequency the lead-
ing mode still contains almost 10% (not shown here for
brevity). The POD also yields the corresponding POD
space coefficients that reveal the fluctuations of the modes
in x-direction. The coefficient of the leading mode shows
a strong harmonic correlation. For this reason, the local
streamwise wavelength can be obtained by differentiating
the instantaneous phase angle along x. The dimensional
streamwise wavelength λx slightly increases in dimensional
x-direction. Scaling the dimensional wavelength with the
local displacement thickness δ1(x) results in an approxi-
mately constant nondimensional wavelength λx/δ1. In this
way, every leading POD mode can be attributed to a partic-
ular pair of nondimensional frequency and nondimensional
streamwise wavelength.

As a last step, after conducting the POD in x-direction,
a subsequent POD in z/δ1-direction is performed on the
leading modes at every given frequency. A regular FT is
conducted on the spanwise POD space coefficients in order
to reveal the spanwise wavelengths (or wavenumbers) that
are prevalent in the POD modes.

The streamwise growth and decay rates of the struc-
tures can be inferred by exploiting the self-similarity prop-
erty. The amplitude spectrum of the temporal Fourier
coefficients depends on the nondimensional frequency
f δ1(x)/Ue(x) which is only a function of dimensional
frequency f and dimensional streamwise coordinate x.
δ1(x)/Ue(x) increases monotonously with x (Kitsios et al.,
2017). Therefore, when a fixed dimensional frequency is
given, the nondimensional frequency is proportional to x.
Due to that equivalence, the streamwise growth and decay
is simply determined by differentiating the amplitudes with
respect to x.

The results after going through the entire process of
conducting a FT in time, followed by a POD on the tempo-
ral Fourier coefficients in x-direction and a POD on the lead-
ing mode in z/δ1-direction will simply be called Fourier
Transform-Proper Orthogonal Decomposition (FT-POD) in
the following.

Figure 3: Relative percentage of total turbulent kinetic
energy (TKE) of the POD space coefficients (az)2

j/U2
e

as a function of frequency f δ1/Ue (circle size denotes
POD mode rank, i.e. largest circle is leading mode;
leading mode is additionally denoted by filled marker)

RESULTS
Figure 3 shows the turbulent kinetic energy (TKE) of

the POD space coefficients after performing the entire FT-
POD. The large-scale structures at low frequencies contain
the most energy compared to the smaller scales at higher
frequencies. For each frequency, the leading POD mode has
approximately twice as much TKE than the second-ranked
mode. Remarkably, the leading mode at the lowest resolv-
able frequency holds almost 7% of the total TKE. This ob-
servation as well as the gap between leading and second-
ranked POD mode indicate that a strongly coherent struc-
ture exists, justifying to focus on the leading modes in the
following.

Figure 4 shows the amplitude spectrum of the leading
FT-POD modes for the coherent wall-normal velocity com-
ponent ṽ. The spectrum for the coherent streamwise com-
ponent ũ is very similar and not shown here for brevity.
Equal to Fig. 3, the highest amplitudes are contained at
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Figure 4: Amplitude spectrum of the leading FT-POD
modes as a function of wall-normal coordinate y/δ1
and frequency f δ1/Ue for wall-normal coherent ve-
locity |ṽ|/Ue

Figure 5: Streamwise wavelength λx/δ1 of the leading
FT-POD mode as a function of frequency f δ1/Ue

low frequencies. With increasing frequency, the amplitudes
decrease significantly (note the linear color scale in con-
trast to the logarithmic axis scale in Fig. 3). Prominently,
the highest amplitudes accumulate around y/δ1 ≈ 1, which
coincides with the inflection point position at y/δ1 = 1.1.
This suggests a correlation between the concentrated strong
amplitude at the inflection point and the compliance to
Fjørtoft’s criterion, potentially supporting KH-type insta-
bilities. It needs to be emphasized that the spectrum shown
here is the result of a significantly narrowing ‘condensation’
of the spectral content of the entire spatio-temporal dataset
after applying the FT in time and spatial POD in x and z/δ1.
The amplitudes observed here correspond to a single fre-
quency and a single streamwise wavelength as well as a
dominant bandwidth of spanwise wavenumbers (both dis-
cussed in the next paragraph). Therefore, the modes inves-
tigated here can indeed be considered coherent in space and
time, representing distinct wavepackets in the TBL.

Based on the POD space coefficients in x-direction
the derived streamwise wavelengths λx/δ1 are displayed in
Fig. 5. With increasing frequency the streamwise wave-
length decreases. In addition, the results from the local LSA
for βδ1 = 0 are shown here for comparison. In the resolved
frequency range of the FT-POD the match is excellent.

In Fig. 6 the spanwise wavenumber spectrum inte-

Figure 6: Spanwise wavenumber spectrum βδ1 of FT-
POD integrated over entire resolved frequency range

Figure 7: Streamwise convective growth rate−αiδ1 as
a function of frequency f δ1/Ue (dashed line denotes
stability limit −αiδ1 = 0)

grated over the entire resolved frequency range is shown.
The POD coefficients do not show a preferable spanwise
wavenumber. Evidently, the spectral content of the ex-
tracted FT-POD modes is dominated by the smallest span-
wise wavenumbers around βδ1 ≈ 0, i.e. the largest span-
wise wavelengths.

The streamwise convective growth rate−αiδ1 is shown
in Fig. 7. The empirical growth rate obtained by FT-POD
clearly exhibits a convective decay of wavepackets in the
resolved frequency range. This partly coincides with the
LSA results which reveal a decay rate +αiδ1 in the same
frequency range as well. However, the decay rates obtained
by the LSA are increasingly underestimated for higher fre-
quencies. This suggests that the eddy viscosity used for
modeling the dissipation term in the LSA is progressively
too low at the smaller scales. For the large scales, the de-
rived eddy viscosity appears to be an appropriate model for
the interaction between coherent and stochastic field, since
the match between LSA and FT-POD at the lower end of
the resolved frequency range is better. Thus, with smaller
scales at higher frequencies, the eddy viscosity would need
to be actually larger to account for the increasing dissipa-
tion.

For the very low frequencies, a range of actual con-
vective growth is evident from the LSA results. That range
is, however, not resolvable empirically due to the limited
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length of the present dataset.
Based on these results, a governing mechanism in this

flow is hypothesized as follows. Since the APG TBL is
self-similar, the dependence of the nondimensional growth
rate from the nondimensional frequency can be interpreted
in several ways. One possibility is to interpret Fig. 7 for
a fixed dimensional frequency f = const. Knowing that
δ1(x) ∝ x and Ue ∝ x−0.23 (Kitsios et al., 2017), the val-
ues on the abscissa can also be read to be proportional to x.
Following this notion, this means that for a specific dimen-
sional frequency, the structure of a supposed KH instability
is convectively amplified in downstream direction at first
for −αi > 0. Then, the structure grows in x-direction until
it saturates at −αi = 0. Subsequently, the structure decays
since −αi < 0.

With increasing dimensional frequency, the streamwise
extent of spatial amplification is shifted farther upstream,
such that growing and decaying wavepackets occur more
upstream when they are small-scale (in dimensional units)
and occur more downstream when they are large-scale.
Note that this interpretation holds as long as the domain is
infinitely long in upstream and downstream direction. This
is implicitly assumed for self-similar flows.

Figure 8 and 9 compare the mode shapes of the co-
herent structure extracted by FT-POD to the mode shapes
predicted by LSA. Due to the arbitrary amplitude scaling
of eigenmodes in eigenvalue problems, the magnitude is
normalized by the maximum magnitude to allow a direct
comparison of the spatial structure. In every case, a very
dominant peak around the inflection point at y/δ1 = 1.1 ex-
ists. However, there is a slight mismatch of the peak po-
sition. The LSA predicts the coherent structure to occur
farther away from the wall than what is observed empiri-
cally by the FT-POD. Again, as for the underestimation of
the decay rates, this may be related to the modeled eddy
viscosity that peaks around the inflection point, inhibiting
significant growth of the structure closer to the inflection
point and, thus, closer to the wall. For the low frequen-
cies f δ1/Ue ≤ 0.33, the peak is comparably broad, indicat-
ing that the mode penetrates close towards the wall, down
to at least y/δ1 ≈ 0.1. For higher frequencies, the peak
width narrows and the mode is more concentrated around
the inflection point position. This can be observed in both
FT-POD and LSA results. This is probably related to the
smaller streamwise wavelengths, leading to smaller scales
in wall-normal direction likewise.

CONCLUSION
Coherent structures are found to arise in the outer re-

gion of the TBL with strong APG. For very low nondimen-
sional frequencies, the LSA predicts linearly unstable co-
herent structures with spatial growth in streamwise direc-
tion. The self-similarity allows for interpreting the nondi-
mensional results for arbitrary dimensional frequencies at
arbitrary x-positions. This constructs the picture of KH-
type wavepackets that are spatially growing and decaying
in streamwise direction in which smaller structures occur
in upstream regions while larger structures occur farther
downstream. This is in accordance with the displacement
thickness δ1 as a characteristic length scale increasing in
downstream direction. For the present dataset, only the
nondimensional frequency range of decaying modes is re-
solvable. Although the decay rates that are determined em-

pirically by the FT-POD only qualitatively agree with the
decay rates predicted by the LSA, the streamwise wave-
lengths agree well and the spatial mode shapes on an ac-
ceptable level between FT-POD and LSA.

To extend the discussion and improve the demonstrated
model, the used eddy viscosity model would need to be re-
vised. It was revealed that the mismatch of the decay rates
and the mode shapes is strongly affected by the eddy vis-
cosity and that the match deteriorates with increasing fre-
quency. Therefore, instead of providing a scale-independent
eddy viscosity, an eddy viscosity model being a function of
frequency would have the potential to provide improved re-
sults. Based on the Boussinesq approximation in Eqn. 3 and
the scale-decomposed FT-POD modes, the eddy viscosity
could be calculated explicity for every frequency of inter-
est and, subsequently, the LSA would be conducted with a
frequency-varying eddy viscosity.
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Figure 8: Mode shapes of streamwise coherent fluctuation |ũ|/|ũ|max as a function of wall-normal coordinate y/δ1
for different frequencies f δ1/Ue

Figure 9: Mode shapes of wall-normal coherent fluctuation |ṽ|/|ṽ|max as a function of wall-normal coordinate y/δ1
for different frequencies f δ1/Ue

6


