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ABSTRACT
A method is developed to solve bi–global stability functions
in curvilinear systems which avoids the reshaping of the air-
foil or remapping the disturbance flow fields. As well, the
bi–global stability functions for calculation in a curvilinear
system are derived. The instability features of airfoil flow
at AOA = 5◦ are studied and the most unstable mode was
found to be related to the wake mode with a dimension-
less frequency close to one, as found experimentally. As
the spanwise wavenumber increases, the number of unsta-
ble modes increases and then stabilizes. A graphical pro-
cessing unit (GPU) is employed to speed up the solution of
the eigenvalue problem. For large matrices, the calculation
time using the GPU was roughly one–tenth the calculation
time of a CPU.

Introduction
Airfoil performance is often limited or degraded by flow
separation, which is usually associated with loss of lift, in-
creased drag, kinetic energy losses and so on. Thus, many
methods of flow control methods have been developed to
suppress it or avoid it entirely (Greenblatt & Wygnanski
(2000)). Exploiting the instability of separated flow, peri-
odic flow control methods improve on steady control while
maintaining the same energy input (Huang, Lu, Zhu, Fu &
Wang (2017)). As a precursor to developing control strate-
gies, it is important to understand and quantify the flow sta-
bility characteristics of separated flow.

There are mainly three kinds of linear stability anal-
ysis methods. Classical stability approaches, often based

on the Orr–Sommerfeld equation, assume the basic flow
is nonhomogeneous in only one spatial direction. In the
past, many studies have investigated flow stability by uti-
lizing the Orr–Sommerfeld equation. This is limited by
an assumption of locally parallel flow, which is not alto-
gether applicable to separated flow. Tri–global stability
considers the three-dimensionality of the base flow and per-
turbations (Chomaz (2005); Theofilis (2011)). There is a
huge memory requirement to solve the eigenvalue prob-
lem limiting its practical use; e.g., for a case with 64
mesh points in each directions, 17.6 Tbytes memory are re-
quired (Theofilis (2003)). The Bi–global method considers
the non–uniformity of the flow variables in two spatial di-
rections and is a good option for airfoil or straight blades
flow as the variation of the flow parameters along the span-
wise direction is significantly weaker than the other two
directions. Taking advantage of this, the bi–global stabil-
ity method assumes the perturbation as a wavelike mode in
the spanwise direction. Compared with tri–global stabil-
ity analysis, the solution process of the bi-global stability
method is simplified and the required memory is signifi-
cantly reduced. Despite this simplification, bi-global sta-
bility analysis is still computationally expensive, as very
large partial-derivative eigenvalue problems (EVP) must be
solved. Exploiting the sparsity or developing high-order
finite-difference scheme are helpful to speed up the solving
process.The high-order finite-difference scheme of order-q
(FD-q) method was found to significantly outperform all
other finite difference schemes in solving classic linear lo-
cal, BiGlobal, and TriGlobal eigenvalue problems based on
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both memory and CPU time requirements (Paredes et al.
(2013)). With parallel computing, GPU computations are
expected to further improve computing speed.

Bi–global stability analysis is used in many areas, e.g.,
channel flow (Floryan & Asai (2011); Merzari et al. (2008);
Malik & Hooper (2007)), flat plate (Alizard & Robinet
(2011)) and bluff body (Sevilla & Martı́nez-Bazán (2004)).
Bi–glogal stability analysis has also looked been applied
to flow past a NACA0012 airfoil at high attack angle at
Reynolds numbers (Rec = u∞c/ν) ranging from 400–1000,
where u∞ is the freestream velocity, c is the chord length,
and ν the kinematic viscosity (Zhang & Samtaney (2016)).
It was found that the near wake and far wake instabilities
are the two dominant unstable modes and with increasing
wavenumber, the unstable modes are suppressed. Kitsios
et al. (2009) performed bi–global stability analysis for flow
past NACA0015 airfoil at the angle of attack 18 degree
and Rec = 200. However, most of the airfoil flows ana-
lyzed are at very low Reynolds number around 200–2000
He et al. (2017); Kitsios et al. (2009). The stability re-
search of Reynolds number around 1×105 is still very lim-
ited, and is an area important for unmanned aerial vehicles
(UAVs), small-scale wind turbines, and low-speed aircraft,
where flow separation is often encountered.

Typically, the input for bi–global stability analysis is
the steady or time-periodic base flow that is nonhomoge-
neous in two spatial directions at a given Reynolds number
(Taira et al. (2017)). The base flow can be stable or in an
unstable state. For stable flow, the base flow can be ob-
tained through solving the governing function of the base
flow. However, it is difficult to compute the base flow for
inherently unstable flows. Normally, selective frequency
damping (Åkervik et al. (2006)) or the mean flow can be
used to obtain the base flow for the analysis of global stabil-
ity. Sometimes, the selective frequency damping method is
unable to identify an unstable steady state (Munday (2017)).
Although the use of the mean flow is not strictly correct with
respect to the formulation of the linearized Navier-Stokes
equations, solving the eigenmodes of perturbations about
the mean flow help identify how perturbations can grow or
delay with respect to the time-average flow. These growing
modes are helpful to aid the design of flow control strate-
gies (Munday (2017)). Bi–global stability function have
been found using the mean flow as the base flow, Sun et al.
(2017)). The results indicate that the choice of the mean
flow as the base state allows for the emergence of the wake
mode, and the present bi–global stability analysis indicates
that the use of the mean flow can identify the wake mode
which is observed in the 2D nonlinear simulation. Thus,
the time average flow field was chosen as a base flow in this
paper.

For the flow past an airfoil, the bi–global stability equa-
tions can not be directly discretized. To solve the stability
equation in the curvilinear coordinate system, Kitsios et al.
(2009) used conformal mapping techniques. The mapping
between the curvilinear and physical coordinates for an air-
foil geometry is very involved, requiring 4 mappings. The
first maps the rectangular curvilinear grid to a cylindrical
coordinates. A Joukowsky transformation is then used to
convert the cylindrical grid to an airfoil shaped mesh. Then
it is necessary to select appropriate parameters to best repre-
sent the airfoil. This airfoil shaped mesh is then translated,
scaled and finally rotated by the angle of attack to align with
the finite volume mesh to return the coordinates in physical
space. Sometimes, it is difficult to find suitable parameters

to best represent the shape of a certain airfoil. There is a
mapping relationship between the velocity in physical co-
ordinates and curvilinear coordinates. Thus, after solving
the bi–global stability equations in curvilinear coordinates,
to show the spatial structure in physical space, a remapping
process is needed. To avoid the reshaping of the geometry
of airfoil and remapping of the flow field, a new method for
solving the stability equation in the curvilinear coordinate
system is proposed.

The goal of the present work is to study the instability
of flow past NACA 0025 airfoil at an angle of attack of 5
degrees and a chord-based Reynolds number of 100,000. A
new way to solve the bi–global stability equations is pro-
posed, followed by a study of the unstable flow features in
a frequency range F+ = 0−12 (F+ = f c/u∞). The effects
of wavelength of spanwise perturbation on the stability of
the flow is also investigated. Finally, an investigation of the
computational speed-up of the eigenvalue solution using a
graphics processing unit (GPU) is introduced.

Base flow computation method

The numerical computations of the base flow were per-
formed using large–eddy simulation (LES). The subgrid
scale stress tensor,τi j, was modeled with an eddy viscos-
ity approach,τi j = −2υrSi j, where υr is the eddy viscosity
and Si j is the filtered strain rate tensor. A subgrid scale
turbulence kinetic energy model was employed. The tem-
poral and convective terms were discretized using a second
order backward implicit time stepping scheme and second
order TVD scheme, respectively. An adaptive time step-
ping scheme was employed to maintain a CFL number of
C0 < 0.7 throughout the domain. The PISO algorithm was
used for the pressure-momentum coupling. The airfoil sur-
face was defined as a no-slip boundary condition and a pe-
riodic boundary condition was applied to the lateral bound-
aries, spaced c/2 apart, where c is the chord length. The inlet
and outlet were assigned laminar inflow and zero-gradient
outflow conditions, respectively.

The computations were performed on 64-128 proces-
sors using the Blue Gene/Q (BGQ) and General Purpose
Cluster (GPC) at Scinet (Loken et al. (2010)).A block-
structured C-mesh with 32×106 cells were employed with
mesh refinement concentrated in the wake and around the
NACA 0025 airfoil which had a chord length c = 0.3m.
For wall-resolved LES, it is well accepted that the required
mesh resolution, which has been achieved in all cases pre-
sented, is ∆x+ ≈ 100, ∆y+ ≈ 2 , and ∆z+ ≈ 20 (Mary &
Sagaut (2002); Sagaut (2006)). The full validation of the
flow can be found in (Ziadé & Sullivan (2017)).

A new method to solve the biglobal stability
function

The state variables (φ ) can be decomposed into the base
state (φ ) and the perturbation(φ ′) (Theofilis (2011)).

φ(x,y,z, t) = φ(x,y)+ εφ
′(x,y,z, t) (1)

where φ(x,y) indicates the two-dimensional steady base
flow, in this study obtained by three-dimensional large-eddy
simulation, and φ ′(x,y,z, t) is the perturbation. The pertur-
bation was assumed to have a form of

φ
′(x,y,z, t) = φ̂(x,y,z)ei(β z−ωt)+ φ̂

∗(x,y,z)ei(−β z+ωt) (2)
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where the ∗ superscript denotes the complex conjugate, the
second term is required because φ̂ and ω in general is com-
plex, while φ ′ must be real. β is the wavenumber of the
structure of the perturbation in the spanwise direction z.
The real part of complex value ω represents the angular
frequency and the imaginary part of ω corresponds to the
growth/damping rate of the associated amplitude function.
A positive value of Im(ω) indicates the exponential growth
of the perturbation, whereas a negative value of Im(ω) cor-
responds to the damping of the unstable mode. In the con-
text of bi-global stability,the base flow in the spanwise di-
rection z , w, is assumed to be zero. When the above
base flow simplifications and modes of perturbation are sub-
stituted into the Navier-Stokes equations and higher order
terms (O(ε2))are neglected, the linearized Navier-Stokes
equations are obtained:

ûx + v̂y + iβ ŵ = 0 (3)

−uûx−vûy− ûux− v̂uy− p̂x+(ûxx+ ûyy−β
2û)/Rec =−iω û

(4)

−uv̂x−vv̂y− ûvx− v̂vy− p̂y+(v̂xx+ v̂yy−β
2v̂)/Rec =−iω v̂

(5)

−uŵx−vŵy− iβ p̂+(ŵxx + ŵyy−β
2ŵ)/Rec =−iωŵ (6)

where the subscripts denote partial differentiation with re-
spect to the indicated variable. The bi-global stability equa-
tions are cast as a partial-derivative eigenvalue problem.

Aφ̂ = ωMφ̂ (7)

φ̂ = (û, v̂, ŵ, p̂) (8)

A matrix based approach is the most used method for bi-
global stability analysis (Kitsios et al. (2009); Paredes et al.
(2013)). A is the spatial discretization operator, which is
a function of the mesh, base flow, Renolds number (Rec),
β and other variables. Finite difference methods are often
used to determine the expression for A. The finite difference
method is performed on a set of discrete grid points. When
it comes to the problem of flow around the airfoil, the above
equations cannot be directly discretized.

To solve the stability equation in the curvilinear coor-
dinate system, Kitsios et al. used conformal mapping to
transform the airfoil to a rectangular domain.

In the present work, base flows are generated in physi-
cal space and need to be transformed to the curvilinear cal-
culation domain before performing the stability calculation.
First, the relationship between the physical coordinate sys-
tem (x,y) and the calculation curvilinear coordinate system
(i, j) is established. These two coordinate systems are or-
thogonal.

i = i(x,y); j = j(x,y) (9)

Then, the parameters in the physical coordinate system can
be represented as a function of the curvilinear coordinates.
For example, considering the first expression of the conti-
nuity equation, ûx can be expressed in parametric form in
the computed coordinate system;

ûx = ûi ∗ ix + û j ∗ jx (10)

And the bi–global stability equations in the new curvilinear
system are

ûi ∗ ix + û j ∗ jx + v̂i ∗ iy + v̂ j ∗ jy + iβ ŵ = 0 (11)

−(ui ∗ ix +u j ∗ jx)∗ û

−(ui ∗ iy +u j ∗ jy)∗ v̂

−(p̂i ∗ ix + p̂ j ∗ jx)−
u(ûi ∗ ix + û j ∗ jx)− v(ûi ∗ iy + û j ∗ jy)+

{ûi ∗ ixx + û j ∗ jxx

+ûii ∗ (ix)2 + û j j ∗ ( jx)2 +2ûi j ∗ ix ∗ jx +

ûi ∗ iyy + û j ∗ jyy + ûii ∗ (iy)2 +

û j j ∗ ( jy)2 +2ûi j ∗ iy ∗ jy−β
2û}/Rec

=−iω û

(12)

−(vi ∗ ix + v j ∗ jx)∗ û−
(vi ∗ iy + v j ∗ jy)∗ v̂−

(p̂i ∗ iy + p̂ j ∗ jy)−u(v̂i ∗ ix + v̂ j ∗ jx)−
v(v̂i ∗ iy + v̂ j ∗ jy)+{v̂i ∗ ixx + v̂ j ∗ jxx

+v̂ii ∗ (ix)2 + v̂ j j ∗ ( jx)2 +

2v̂i j ∗ ix ∗ jx + v̂i ∗ iyy + v̂ j ∗ jyy +

v̂ii ∗ (iy)2 + v̂ j j ∗ ( jy)2 +2v̂i j ∗ iy ∗ jy−β
2v̂}/Rec

=−iω v̂

(13)

−u(ŵi ∗ ix + ŵ j ∗ jx)−
v(ŵi ∗ iy + ŵ j ∗ jy)−

iβ p̂+{ŵi ∗ ixx +

ŵ j ∗ jxx + ŵii ∗ (ix)2 + ŵ j j ∗ ( jx)2 +

2ŵi j ∗ ix ∗ jx + ŵi ∗ iyy + ŵ j ∗ jyy +

ŵii ∗ (iy)2 +

ŵ j j ∗ ( jy)2 +2ŵi j ∗ iy ∗ jy−β
2ŵ}/Rec

=−iωŵ

(14)

It should be noted that the value of ix should be solved
through an inverse transformation.

x = x(i, j);y = y(i, j) (15)
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Differentiating, it is possible to obtain

dx = xi ∗di+ x j ∗d j (16)

dy = yi ∗di+ y j ∗d j (17)

di = ix ∗dx+ iy ∗dy (18)

d j = jx ∗dx+ jy ∗dy (19)

As a matrix, this becomes

[
ix iy
jx jy

]
=

[
y j −x j
−yi xi

]
∣∣∣∣ xi x j
yi y j

∣∣∣∣ (20)

and the coefficients in the above equations can be solved.
For corresponding points, they share the same value and
simplify to

u(xA,yA) = u(iA, jA) (21)

The bi–global stability equations can also be cast as a
partial-derivative eigenvalue problem,

Âφ̂ = ωMφ̂ (22)

in which Â is the spatial discretization operator, which is a
function of the mesh, base flow, Reynolds number Rec, φ̂

and spanwise perturbation wavenumber β . The code was
validated against the results of Theofilis et al. (2004) for
Poiseuille flow in a rectangular domain at Re = 100 and
β = 1 and showed good agreement.

With such large–scale partial–derivative eigenvalue
problems, it is computationally more efficient to solve
for the eigenvalues nearest a certain point in the complex
plane using a shift-and-invert method, such as the implicitly
restarted Arnoldi method (IRAM). Thus, the above eigen-
value problem is modified as shown, given a complex shift
σ :

(Â−σM)−1Mφ̂ = φ̂/(ω−σ) (23)

0n the airfoil surface, the boundary conditions û = v̂ = ŵ =
0 are imposed on the perturbation velocities and the compat-
ibility condition for pressure of a zero wall normal gradient
is employed (Theofilis et al. (2004)). Since the properties of
the perturbations are not known before solving the EVP, the
amplitude functions are linearly extrapolated from within
the domain (Kitsios et al. (2009)). A code was written to
solve this eigenvalue problem using GPU acceleration.

Figure 1. The base flow of the NACA 0025 at AOA=5

Results and discussion
The base flow for an airfoil angle of attack of 5 degrees
and Rec = 1× 105 is shown in Figure 1. There is a small
separation bubble on the airfoil surface near the middle, and
the flow reattaches at prior to the trailing edge. The time–
averaged flow is dominated by a small recirculation zone in
this area.

When the Reynolds number is very low (below 2000),
the angular frequency is close to 0 and there are only 1 or
even no unstable modes in some cases, which means that
setting the shift value σ to zero is the proper choice (Kit-
sios et al. (2009)). When the Reynolds number is higher,
as in this case, there are many unstable modes and the di-
mensionless frequency F+ has a large range from 1 to 10,
corresponding to the angular frequency around 0–62.8. To
deploy the full power of the Arnoldi algorithm and to avoid
computing all the eigenvalues (which requires significant
memory) (Groot (2013)), several shift values σ are chosen
to capture the eigenvalues with the angular frequency in the
range of 1–70.

Figure 2 shows the eigenvalue distribution with the
spanwise perturbation wavenumber set to zero, which is
used to examine the stability characteristics of the two-
dimensional flow. There are fewer growth modes in the
high-frequency region compared to the low-frequency re-
gion. When dimensionless frequency is larger than 6, there
are roughly 8 unsteady modes and the unsteady growth rate
is significantly decreased. This means that it is possible
to excite the unsteady separated flow at low frequency to
fully utilize the instability of flow. The dimensionless fre-
quency of the most unstable modes was about 1 and the spa-
tial structure of this most unstable mode is shown in Figure
?? by the real part of the streamwise and normal veloci-
ties. This structure exhibits classical features of the wake
type mode. The alternating velocity perturbation originates
approximately 2 chord lengths downstream the airfoil.

Monotonically growing modes corresponding to F+ =
0 are also found at this Reynolds number. The spatial struc-
ture of this mode, known also as the stationary mode, is
shown in Figure 4. While this mode does not fluctuate in
time (F+ = 0), it does grow (ωi ≈ 0.36). This kind of sta-
tionary mode was also identified in other studies (Kitsios
et al. (2009)).

Another purpose of this work is to examine actua-
tor spacing as this is an important flow control parame-
ter. The spanwise spacing on the eigenmodes is helpful for
preliminary selection of actuator spacing. Large spanwise
wavenumber, β , corresponds to small-wavelength pertur-
bation in the three-dimensional flows. In this case, shift
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Figure 2. Eigenvalue spectrum for β = 0

(a) Eigenfunction of Re(û)

(b) Eigenfunction of Re(v̂)

Figure 3. Spatial structure of most unstable mode(F+ ≈
1)

values were chosen as 0 to initially study the effect of
three-dimensional span spacing on the instability of flow
field. Compared with the two–dimensional separated flow
β = 0, adding a three-dimensional perturbation increases
the number of unstable modes. Generally, as the spanwise
wavenumber increases, the number of unstable modes also
increases until it reaches a stable range. For flow control,
it is necessary to excite the separated flow at small actuator
spacing for low angles of attack to fully exploit the instabil-
ity of separation.

Implementation of graphics processing unit
(GPU)

To minimize time to solution, a Tesla K80 GPU was used
to test the performance of GPU speed up. Comparing CPU
and GPU performance (figure 6) when the size of Matrix
A is less than 7000×7000, CPU calculation speed is bet-
ter than GPU. As the dimension of the matrix A increases,
the advantage of using GPU calculation becomes more and
more apparent. When the size of matrix A is 25600×25600,
the time required for CPU calculation is ≈ 21100 seconds,
while the GPU only requires ≈ 2150 seconds. The calcula-
tion time using the GPU is approximately one–tenth that of
the CPU.

(a) Eigenfunction of Re(û)

(b) Eigenfunction of Re(v̂)

Figure 4. Spatial structure of stationary mode(F+ = 0)

Figure 5. The effects of β on the number of unstable
modes

0 5000 10000 15000 20000 25000 30000

0

5000

10000

15000

20000

Figure 6. The comparison of computing time between
CPU and GPU

Conclusions
A new method is developed to solve the bi–global stabil-
ity equations in curvilinear coordinates which avoids the
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reshaping of the airfoil or remapping the disturbance flow
fields, and the bi–global stability function in the calculation
curvilinear system are derived. With the validated code, the
instability features around an airfoil at an angle of attack
of 5 degrees and Rec = 1× 105 are investigated. At this
angle of attack, there is a small separation bubble in the
airfoil surface. The most unstable mode was found to be
related to the wake mode and the dimensionless frequency
is close to 1. The dimensionless frequency of most of the
unstable modes are below 6. As the spanwise wavenumber
increases, the number of unstable modes also increases and
then remains stable in a range for this case. Compared with
tri–global stability, the memory that bi–global stability re-
quired is reduced significantly. However, it is still time con-
suming, especially when the matrix becomes large. A GPU
was employed to speed up the solution of the eigenvalue
problem. For large matrices, the calculation time using the
GPU was roughly one–tenth that of the CPU.

Acknowledgments
The authors gratefully acknowledge the financial support
of the Natural Sciences Engineering Research Council of
Canada, FedDev Southern Ontario and China Scholarship
Council. This work was also supported by the National
Basic Research Program of China (NO. 2014CB239602)
and the National Natural Science Foundation of China (NO.
51176072). Computations were performed on the GPC su-
percomputer at the SciNet HPC Consortium. SciNet is
funded by: the Canada Foundation for Innovation under
the auspices of Compute Canada; the Government of On-
tario; Ontario Research Fund - Research Excellence; and
the University of Toronto. Computations were also per-
formed on the SOSCIP Consortiums Blue Gene/Q and Ni-
agara computing platforms. SOSCIP is funded by the Fed-
eral Economic Development Agency of Southern Ontario,
IBM Canada Ltd., Ontario Centres of Excellence, Mitacs
and 14 academic member institutions.

REFERENCES
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