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ABSTRACT
An artificial intelligence (AI) control system is devel-

oped to manipulate a turbulent jet targeting maximal mix-
ing. The control system consists of sensors (two hot-wires),
genetic programming for evolving the control law and actu-
ators (6 unsteady radial minijets). The mixing performance
is quantified by the jet centerline mean velocity. AI control
discovers a hitherto unexplored combination of asymmetric
flapping and helical forcing. Such a combination of several
actuation mechanisms, if not creating new ones, constitutes
a large challenge for conventional methods of parametric
optimization. AI control vastly outperforms the optimized
periodic axisymmetric, helical or flapping forcing produced
from conventional open- or closed-loop control. Intrigu-
ingly, the learning process of AI control discovers all these
forcings in the order of increased performance. Our study is
the first AI control experiment which discovers a non-trivial
spatially distributed actuation optimizing a turbulent flow.
The results show the great potential of AI in conquering the
vast opportunity space of control laws for many actuators,
many sensors and broadband turbulence.

INTRODUCTION
We present the first turbulence control experiment em-

ploying artificial intelligence methods optimizing a spatial-
ly distributed actuation. In particular, turbulent jet mixing is
optimized by a novel combination of 3D actuation mecha-
nisms learned in situ with linear genetic programming. Tur-
bulence control has a history of thousands of years arguably
starting with feathers on an arrow to stabilize it flight from
a bow. The first theoretical basis has been established over
hundred years ago with the Prandtl’s discovery of boundary-
layer theory in 1904. Hitherto, most turbulence control
studies have either been performed with a direct numeri-
cal simulation based on linear control theory or have relied
on carefully tuned constant or periodic actuation in experi-
ments (Brunton & Noack, 2015).

In general, active control of jets is divided into open-

loop and closed-loop control. Note that closed-loop control
shows the potential to significantly reduce power require-
ments in comparison to open-loop control strategies, since
the random aspect of these structures reduces the effective-
ness of an open-loop configuration (Moin & Bewley, 1994).
Most literature on closed-loop turbulent flow control falls in
one of two categories: model-based and model-free tuning
of the control laws. For model-based control, the discretised
Navier-Stokes equations, reduced-order models and linear
stochastic estimation are used to resolve flow physics and
nonlinearities (Sipp et al., 2010; Noack et al., 2008). In the
previous work (Akervik et al., 2007), reduced-order models
were applied to a few non-normal global eigenmodes of the
linearized Navier-Stokes equations as a basis for Galerkin
projection. Yet, these approaches have limited applicabil-
ity to unstable advection dominated flows (Onofrio et al.,
2011). The model-based control logic is physically ap-
pealing but cannot be accurate than the model. However,
high-fidely model-based control consumes a large amount
of computational time, typically not achievable within the
experimental response times. Therefore, model-free con-
trol is most widely applied in turbulent flow control. The
adaptive PID control was used to suppress cylinder vibra-
tion (Zhang et al., 2004). Extremum seeking control (ESC)
was used for separation control on a high lift configuration
(Becker et al., 2007). Yet, in all reported cases the result-
ing control law was simple, e.g. based on a single actuator
characterizable by one or two parameters. The optimization
of such control laws is achievable with conventional tech-
niques (Wu et al., 2018).

The nonlinear control optimization involving many in-
dependent actuators can be unimaginably complex. Take
the manipulation of a turbulent jet based on unsteady ra-
dial minijets for example. One single periodically operat-
ed minijet of a given exit diameter may be associated with
three control parameters, namely, the excitation frequen-
cy fe, mass flow rate mmini and duty cycle α (Perumal &
Zhou, 2018); however, multiple, say six, equally separated
independent minijets introduce the complexity of distribut-
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Figure 1. Sketch of the experimental setup: (a) main jet
facility; (b) minijet arrangement; (c) minijet assembly.

ed actuation or additional dimensions. The minijets can be
active or off and six minijets may occur alternately from
one configuration to the other. As a result, the complexity
of the problem grows tremendously. The optimization of
nonlinear control laws for such high dimension problems is
largely terra incognita, which is extremely challenging, if
not impossible, for conventional techniques. This is a great
challenge for turbulence control. Then could AI be used to
control turbulence? Can it outperform conventional meth-
ods?

This work aims to answer the above questions. This
study focusses on the control of a turbulent jet, one of few
best investigated and most complex textbook flows. This
configuration has a large range of industrial applications
like in inkjet printers, dilution jets in combustors, fuel in-
jection of combustion engines, just to name a few. Anoth-
er important interest in jet control is noise mitigation (Jor-
dan & Colonius, 2013). The coherent structures of the jet
have a large range of scales, varying convection velocity and
may feature a rich set of three-dimensional patterns (Gar-
naud et al., 2013). The control with spatially distributed
actuators at the upstream of nozzle exit aims to maximize
mixing. Control design is framed as regression problem:
find a mapping from inputs, e.g. sensor signals, to outputs,
the actuation commands which optimize the cost function.
A much richer set of nonlinear control laws has recently
been explored with methods of artificial intelligence, like
neural networks (Lee et al., 1997), genetic algorithms (Be-
nard et al., 2016) or genetic programming (Duriez et al.,
2016). Here following Dracopoulos (1997) and Duriez et al.
(2016), genetic programming is chosen as a very powerful
solver.

EXPERIMENTAL SET-UP
A turbulent round jet facility, including an air supply

system, main round jet and minijet actuators is applied. Fig-
ure 1(a) shows the schematics of the main jet facility. The
details are described by Fan et al. (2017). The Reynold-
s number ReD = U jD/ν of the main jet is fixed at 8000,
where U j is the jet centerline velocity measured at the noz-
zle exit, ν is the kinematic viscosity of air and D = 20 mm
is the diameter of the nozzle. The centre of the jet exit is set
as the origin of a Cartesian coordinate system, where the x-
axis is aligned with the streamwise direction and the y-axis
contains minijets No. 1 and No. 4 (figure 1c).

The actuation is performed with 6 independent mini-
jets upstream of the nozzle exit. The minijets are connect-
ed to six different channels each of which consists of a
mass flow meter and flow-limiting valve. The mass flow
rate is controlled by the flow-limiting valve and measured
by the mass flow meter. The six minijets have orifice di-
ameter of 1 mm are equidistantly placed at xi = −0.85 D,
yi = (D/2) cosθi, zi = (D/2) sinθi where θi = (i−1)2π/6,
i = 1, . . . ,6. The locations of the actuators are shown in the
figure 1(b). The minijets are operated by electromagnetic
valves in an ON/OFF mode. The valves limit the frequency
of the minijet to 500 Hz, more than three times the charac-
teristic shedding frequency of the unforced jet f0 = 135 Hz
and more than seven times the excitation frequency of this
study fe = 67 Hz.

The jet exit velocity at (x/D,y/D,z/D) = (0,−1/4,0)
is measured with a tungsten wire of 5 µm in diameter. This
hot-wire is operated on a constant temperature circuit (Dan-
tec Streamline) at an overheat ratio of 0.6. The centerline
jet velocity at x/D = 5 is monitored with a second hot-wire.
U j and U5D denotes the averaged velocities at nozzle exit
and after the potential core, respectively. Note that hot-wire
is in the plug flow nozzle exit region but slightly of center
to allow simultaneous measurements of both quantities in
the experiment. The hot-wires are calibrated at the jet ex-
it using a Pitot tube connected to a micromanometer (Fur-
ness Controls FCO510). The experimental uncertainty of
the hot-wire measurement is estimated to be less than 2%.

A planar high-speed PIV system, including a high
speed camera (Dantec Speed Sence90C10, 2056 × 2056
pixels resolution) and pulsed laser source (Litron LDY304-
PIV, Nd:YLF, 120 mJ/pulse) is deployed for flow visualiza-
tion in the x− z, x− y and y− z planes. An oil droplet gen-
erator (TSI MCM-30) is used to generate a fog for seeding
the flow. The seeding particles are supplied into the mixing
chamber (figure 1a) to mix with air. Flow illumination is
provided by a laser sheet of 1 mm in thickness generated by
the pulsed laser via a cylindrical lens. Particle images are
captured at a sampling rate of 405 Hz, corresponding to 3
f0 and 6 fe.

A National Instrument PXIe-6356 multifunction I/O
device, connected to a computer, is used in the experiment
for the real-time control at a sampling rate of fRT =1 kHz.
A LabVIEW Real-Time module is used to execute the pro-
gram. Commanding actuation and data acquisition are per-
formed at the same sampling rate of 1 kHz. The effective
excitation frequency fe can be expressed by fe = fRT /Nsp,
where Nsp is the number of sampling points in one actua-
tion period 1/ fe. The working frequency range of actuators
([0,500] Hz) imposes a minimum value of 2 for Nsp. For a
given fe, the possible duty cycles α can be deduced from
α = m/Nsp, m = 1, . . . ,Nsp −1. Thus, the number of possi-
ble duty cycles Nsp decreases with f .

ARTIFICIAL INTELLIGENCE CONTROL
Control Problem and Benchmark Actuations

The jet configuration has 2 hot-wire sensors with sig-
nals s1 and s2. For the feedback experiment, these hot-wires
are moved to x = 5D on the centerline and to x = 3D to-
wards the shear-layer respectively. The sensor signals are
comprised in one 2-dimensional column vector sss := [s1,s2]

†

/U j, normalized by the jet velocity. The cost function to be
minimized reads J = s1/U j = 1−K, noting that a reduced
centerline velocity implies increased entrainment/mixing in
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Figure 2. Two periods of the actuation command for the
best control laws of generation 1, 2, and 5 of the AI control
system. Here, bi = 1 if actuator i is blowing and 0 other-
wise.

the potential-core region. The cost has no penalization of
actuation as the average mass flow is kept at the same con-
stant for all actuators.

The ith minijet blows if the actuation command bi
command is positive and is closed otherwise. The six-
dimensional vector bbb = [b1, . . . ,b6]

† comprises all actua-
tion commands. The actuation may depend on the harmonic
functions hi = cos(ωt −ϕi), ϕi = 2πi/6. We use six linearly
dependent signals instead of two linearly independent ones
to simplify the expressions for helical forcing. The angular
frequency ω corresponds to 67 Hz or approximately half the
characteristic unforced shedding frequency. This value has
been optimized for flapping forcing with a single minijet
under the same conditions by Wu et al. (2018) and predict-
ed by a global stability analysis Garnaud et al. (2013). The
six-dimensional vector hhh = [h1, . . . ,h6]

† includes all these
harmonic functions. In this notation,

axisymmetric bi = h1 − ca, i = 1, . . . ,6; (1a)

helical bi = hi − ch, i = 1, . . . ,6; (1b)

flapping bi = hi − c f , i = 1, . . . ,6. (1c)

Here, the constants ca, f ,h define the duty cycles and have
been optimized with respect to the cost. The costs Ja, Jh, J f
of the optimized axisymmetric, helical and flapping forcing
constitute the benchmarks for AI control.

Note that three control modes are classified by con-
trol signal which have a different phase shift between the
any two adjacent minijets (figure 2). Meanwhile, the flow
physics of the jet mixing enhancement continues to change
as well as the control modes. The details have been dis-
cussed below.

Control Optimization using Linear Genetic
Programming

Further AI-based jet mixing optimization is based on
a general ansatz for periodic open-loop forcing—including
the above mentioned forcing:

bbb = KKK(hhh). (2)

Note that the nonlinear function KKK can create arbitrary high-
er harmonics, like the 10th harmonics via h10

1 −1/2 as well
as arbitrary phase relationships.

The control law (2) is optimized with respect to the
cost J using the powerful linear genetic programming (L-
GP) as a regression solver. We take the same parameters

Figure 3. The learning curve of AI control. For details see
text.

for control law representation and for the genetic opera-
tions as Li et al. (2017) for drag reduction of the Ahmed
body. The first generation of LGP, n = 1, contains Ni = 100
random control laws KKK1

i (hhh), i = 1, . . . ,Ni, also called in-
dividuals. Each individual is tested for 5 seconds in the
experiment to yield the measured cost J1

i . Subsequent gen-
erations are generated from the previous ones with genetic
operations (elitism, crossover, mutation and replication) and
tested analogously. After the in situ performance measure-
ments, the individuals are re-numbered in order of perfor-
mance, Jn

1 ≤ Jn
2 ≤ . . . ≤ Jn

Ni
, where the superscript ‘n’ rep-

resents the generation number. As plant-specific rule, we
discard and replace any individual for testing if one actua-
tor is not active or constant blowing.

RESULTS AND DISCUSSION
Figure 3 displays 3000 evaluated cost functions under

AI control. The unforced benchmark cost is marked by an
open square at generation 0 and continued as horizontal sol-
id line. The corresponding flow visualization in subfigure
(u) shows the dye from the nozzle exit in the x− y plane.
The displaced vortex rings shed with frequency f0 = 135
Hz.

The following open squares at generation n = 1, . . . ,30
mark the first and best individual of each generation with
Ni = 100 individuals. The remaining costs of each gener-
ation are displayed by the monotonously increasing curve.
Every curve has a unique color.

The best individual of the first generation has an ax-
isymmetric control law b1 = b2 = b3 = b4 = b5 = b6 =
−0.832+ sin(ωt +4/6π). This law is equivalent to (1a)
modulo a time shift.

The performance J1
1 = 0.626 is slightly better than the

optimized axisymmetric performance (1a). The reason may
be attributed to the converged long-term velocity measure-
ment Ja as compared to the short and less accurate mea-
surement of AI control. From several similar or equivalent
control laws, only the best value is monitored. It should be
noted that learning of AI control only requires an approx-
imately accurate relative ordering of the individuals. An
accurate long-term evaluation of the cost is only performed
in the last generation n = 30. Subfigure (a) shows the corre-

3



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

sponding flow visualization and the dashed horizontal line
represents J1

1 .
In the second generation, AI control discovers

the better performing helical forcing b1 = sin(ωt +
4/6π) − 0.145,b2 = −0.347sinωt,b3 = ((sin(ωt +
8/6π) + (sin(ωt + 8/6π)2 + sin(ωt + 2/6π)2))sin(ωt +
8/6 ∗ π),b4 = 2sin(ωt + 10/6π)((sin(ωt)2 − sin(ωt +
2/6π)(sin(ωt)2 − sin(ωt + 2/6π)),b5 = 1/(−0.313 +
sinωt)+sinωt),b6 =−0.354sin(ωt+8/6π). This forcing
is not of the form (1b), but it clearly shows a uniformly
traveling wave in azimuthal direction which is similar to
the figure 2(b). The corresponding flow visualization (h)
shows a more regular pattern and the cost J2

1 is marked by
a densely dashed horizontal line.

In the fifth generation, AI control learns flapping forc-
ing b1 = b2 = b3 = −0.811+ sin(ωt + 2/6π)),b4 = b5 =
b6 =−0.782−sin(ωt+2/6π). In contrast to (1c), this forc-
ing is asymmetric. An optimized asymmetry yields a repro-
ducibly better mixing. Subfigure (f ) shows a strong mixing
in the flapping plane(figure 3f1) and a less pronounced mix-
ing in the orthogonal plane (3f2) which is symmetric with
respect to the two synchronous actuator groups (figure 2c).

In the eleventh generation, AI control discovers a nov-
el combination of asymmetric flapping forcing and helical
forcing, significantly outperforming the flapping forcing of
generation n = 5 and yielding a decrease of the centerline
velocity by more than a factor 3. The corresponding flow vi-
sualization (c) indicates the flapping mechanism (compare
with (f1)). The helical component will be shown in a later
analysis. After this generation, cost and actuation mech-
anism hardly change in subsequent generations, indicating
the convergence of the AI learning process. This actuation
mechanism is reproducible, i.e. the combined flapping and
helical forcing and very similar cost has been observed in all
experiments with different initializations of the first gener-
ation. The learning process may not display all of the three
symmetric forcings as the best individuals.

The flow response to the four different forcings of AI
control is depicted in a near-field cross-plane in figure 4.
The first row shows the axisymmetric forcing at 6 con-
secutive times representing one actuation period. Subfig-
ure (a2) displays the footprint of a vortex ring which dis-
integrates later in six mushroom-like structures (figure 4
a5,a6). In the second row, helical forcing is clearly evi-
denced by the clockwise rotating satellite region (figure 4
h1-h6). The third row illustrates flapping flows with patches
of dye in the flapping plane (f3,f6) and mushroom-structures
at other instances. The bottom row shows the best AI con-
trol, combination of asymmetric flapping and helical forc-
ing. The footprints of helical can be seen by the clock-
wise ring structures (figure 4c1-c6). The flapping compo-
nent is shown in the figure 3(c) Proximity maps (see § 7-
4.1 of Duriez et al. (2016)) provide another very reveal-
ing illustration of the learning process of the control laws.
The underlying metric between two control laws bbb and bbb′

is defined as root-mean-square of the Euclidean distance√
(1/T )

∫ T
0 dt ∥bbb(t)−bbb′(t)∥2, T = 2π/ω being the actu-

ation period. Figure 5 displays the proximity map of the
control laws in a two-dimensional plane such that this met-
ric is optimally preserved, i.e. close points represent similar
control laws. This plane is spanned by the feature coor-
dinates γ1, γ2 which are automatically computed from all
displayed generations. The associated cost J is color-coded
from blue (J = 0) to yellow (J = 1) as indicated by the col-
orbar. The subfigures display the feature coordinates of the

Figure 4. Sequential photographs of the cross-sectional
flow structure at x/D = 0.25 for the four stages: (a1-a6)
axisymmetric forcing, (h1-h6) helical forcing, ( f 1- f 6) flap-
ping forcing, and (c1-c6) combined forcing

Figure 5. Proximity maps associated with the learning
curve (figure 3). The subfigures display the four genera-
tions n = 1,2,5,11 in which a new actuation mechanism
has been learned. Each symbol corresponds to one control
law. The best individual has been marked and explained.

four discussed generations. Clearly, the control laws move
collectively towards larger γ1 and lower cost function. In-
terestingly, the individuals tend to populate discrete curves,
a commonly observed phenomenon of AI control.

CONCLUSIONS
An AI control system has been developed which learns

automatically how to optimize a spatially distributed actua-
tion and thus a turbulent jet for the targeted cost. Like vir-
tually all control strategies of nonlinear dynamics, AI con-
trol solutions do not come with a proof of global optimality.
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Yet, the results for jet mixing optimization demonstrate a
number of highly desirable features. First, AI control has
unveiled a few typical control laws or forcings, i.e., ax-
isymmetric, helical and flapping, in its learning process and
eventually converged to a sophisticated spatio-temporal ac-
tuation which is the combination of the individual forcings.
This combination has produced a fascinating turbulent flow
structure characterized by rotating and flapping jet column,
along with the generation of mushroom like structures, all
acting to enhance jet mixing and thus vastly outperforming
several known optimal benchmark actuations. Note that the
learning time of 3000 individuals or 6 hours wind-tunnel
testing is remarkably short for such a complicated solution.
Second, unlike other simple conventional open or closed-
loop control methods, AI control could find optimal control
laws without any model or assumptions about the actuation
mechanisms. Third, the cost J corresponding to AI-learned
combination is reproducible with other initial generations.
The control laws may analytically differ but produce al-
most identical actuation commands. Fourth, the parameters
of the underlying genetic programming are taken verbatim
from (Duriez et al., 2016) and were already proven useful
in many other experiments. No sensitive dependence on the
parameters has been observed so far and AI control can be
expected to yield near-optimal results in its first application
to a new plant. The iso-surfaces display flapping and heli-
cal motion clearly in the best AI combined forcing. Finally,
the search space for a control law is extremely large and of
very high complexity / dimensions, including multiple fre-
quencies, minijet configurations, temporal and spatial phase
differences between the configurations, and duty cycles of
minijets, along with sensor feedback.
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