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ABSTRACT
We develop a theoretical method to derive the scal-

ings of the turbulent/non-turbulent interface (TNTI) local
entrainment velocity for self-similar turbulent planar jets
and also use elements of this method to develop a robust
way of estimating this local TNTI velocity from Direct Nu-
merical Simulations (DNS) of a turbulent planar jet. Our
DNS supports our theoretical assumptions and predictions,
in particular the link between TNTI entrainment and the
equilibrium/non-equilibrium nature of the turbulence dissi-
pation. Tracking of fluid elements which cross the TNTI re-
veal the existence of a small number of detrainment events
and of a small number of fluid elements which undergo a
series of entrainment/detrainment TNTI crossings.

Jet growth and Dissipation Scaling
In this work we study turbulent planar jets theoreti-

cally and computationally. The jet width δ and the cen-
terline velocity uC of self-similar planar jets obey the fol-
lowing scalings with streamwise distance x from the jet
nozzle exit; δ (x)/H ∼ (x− x0)/H and uC(x)/UJ ∼ ((x−
x0)/H)−1/2 (where H is the jet opening width, UJ is the
inlet characteristic velocity and x0 is a virtual origin), pro-
vided that the centerline turbulent dissipation rate scales as
ε0 =Cε K3/2

0 /δ where Cε is the dissipation constant and K0
is the centerline turbulent kinetic energy (Townsend (1976),
George (1989)). However a different dissipation scaling
has recently been found in various turbulent flows including
planar jets (Dairay et al. (2015), Vassilicos (2015), Cafiero
& Vassilicos (2019)). This non-equilibrium turbulence dis-
sipation scaling is

ε0 ∼ (ReG/Reδ )
mK3/2

0 /δ (1)

where ReG =UJH/ν is the global Reynolds number, Reδ =√
K0δ/ν is the local Reynolds number and m is the non-

equilibrium dissipation scaling exponent. This implies re-
vised jet growth and centerline velocity decay rates

δ (x)/H ∼ ((x− x0)/H)2a (2)

uC(x)/UJ ∼ ((x− x0)/H)−a (3)

where 2a = (m+ 1)/(2m+ 1). The classical scalings are
recovered for m = 0, and the high Reynolds number non-
equilibrium scaling corresponds to m = 1. For m = 1, the
scalings of the jet growth and the centreline velocity decay
rates are δ (x)/H ∼ ((x− x0)/H)0.66 and uC(x)/uJ ∼ ((x−
x0)/H)−0.33.

DNS of a planar jet
We have carried out a Direct Numerical Simulation

(DNS) of a planar jet using the sixth order finite dif-
ference Navier Stokes solver ”Incompact3d”. We con-
ducted two different simulations, DNS3000 and DNS4000,
with different Reynolds numbers and boundary (entrain-
ment) conditions. The domain sizes and grid resolu-
tions are Lx,Ly,Lz = (40H,40H,8H),(40H,80H,8H) and
Nx,Ny,Nz = (1501,1501,300),(1501,2001,300) for DNS
3000 and DNS4000 respectively. The computational grid
is homogeneous in the x (streamwise) and z (spanwise) di-
rections. Lateral (y) direction grid is also homogeneous for
DNS3000 but it is stretched for DNS4000. We used a chan-
nel flow profile with artificial turbulence (see Klein et al.
(2003)) as jet inlet and the convective boundary condition
at the outlet. The inlet Reynolds number is ReG = 3000
for DNS3000 and ReG = 4000 for DNS4000. We im-
posed free-slip boundary condition at the lateral boundary
for DNS4000 and Neumann condition for DNS3000. Peri-
odic boundary conditions are imposed at the spanwise di-
rection boundaries. Our two DNS return different decays of
the mean velocity and different jet width growths. They are
compared with reference experiments and DNS (Thomas &
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Figure 1. Jet velocity decay and width growth for
DNS3000 and DNS4000 and various other simulations and
experiments.
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Figure 2. Cε0Rem
δ

plotted along x/H (normalized by the
value at x/H=20). DNS4000.

Chu (1989); Cafiero & Vassilicos (2019); Watanabe et al.
(2014)) in figure 1. Note that entrainment conditions and
Reynolds numbers are typically different between differ-
ent experiments. The turbulent dissipation scaling has been
computed on the centerline, and we have confirmed that Cε

is not constant but decreases along x while Reδ increases.
We have tried to fit different dissipation exponents m to the
current simulation data; m = 0.5 was found to be the best
exponent in a range between, approximately, x/H = 19 and
x/H = 32 for DNS4000 (see figure 2). For DNS3000 there
is no satisfactory power law fit over a reasonable x/H range
for any value of m.

Turbulent / Non-turbulent interface and local
interface velocity vn

Different jet growth rates must be reflected in different
entrainment and turbulent non-turbulent interface (TNTI,
da Silva et al. (2014)) velocities. Following Zhou & Vas-
silicos (2017), we start from incompressibility ∂u/∂x +
∂v/∂y+∂w/∂ z = 0 and obtain the following relation.
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Figure 3.
∫

At (x) udydz/(uCδ16H) plotted along x/H for
different enstrophy thresholds. DNS4000.

d
dx

∫

At (x)
udydz = L vn (4)

where At(x) is the instantaneous area inside the TNTI, the
overbar is an average over time, L is the time-averaged
interface length and vn is a time and line-averaged local in-
terface velocity. The self-similarity of the jet can be used
to estimate the LHS of this equation (4):

∫
At

udydz ∼ uCA
where A ∼ δH is the time averaged vortical area bounded
by the TNTI, in good agreement with our DNS (see figure
3). Hence

d
dx

(uCδH)∼L vn. (5)

Given that we know δ and uC from equations (2) and
(3), we now need an estimate of the interface length L in
order to obtain the interface velocity vn. We used our DNS
to verify that the interface has a fractal structure and that
L ∼ H(ηI/δ )1−D where ηI is given by the Corrsin inter-
face thickness estimate ηI = ν/vn, where ν is the fluid’s
kinematic viscosity (Corrsin & Kistler (1955), see figure
4). Fractal dimensions of the interface were found between
D = 1.1 and D = 1.2 (for different enstrophy threshold val-
ues characterizing the TNTI), D remaining constant along
the streamwise direction. Substituting our fractal-Corrsin
estimate of the interface length into equation (5), we obtain

vn

UJ
∼ Re(1−D)/D

G ((x− x0)/H)−γn (6)

where γn = 2a+(1− 3a)/D. The local interface velocity
depends on the global Reynolds number ReG, fractal dimen-
sion D and the scaling exponent a = a(m).

Taylor and Kolmogorov velocity scalings
Classical estimates of vn assume it to be proportional

to the Kolmogorov velocity vη kol = (νε0)
1/4. Our equation

(6) for the interface velocity agrees with the Kolmogorov
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Figure 4. Comparison of actual interface length L and
Fractal-Corrsin estimate L(ηI) = 16H(ηI/δ )1−D and ηI =

ν/vn for various enstrophy thresholds. DNS4000.
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Figure 5. Velocity scaling exponent γn, see equation (6),
plotted against the turbulence dissipation exponent m. Yel-
low solid line: scaling exponent for vλ , blue solid line:
scaling exponent for vηkol and dashed lines: scaling ex-
ponent for vn corresponding to different fractal dimensions
D=1.0,1.1,1.2,1.33 (bottom to top).

velocity estimate provided that m = 0 and D = 4/3. In
the case of high Reynolds number non-equilibrium turbu-
lence where m = 1, vn is proportional to the Taylor velocity
vλ = ν/λ where ε0 ∼ νK0/λ 2 irrespective of the value of
D. The Reynolds number of our DNS is not high enough for
m= 1. As already stated, we find m= 0.5. The TNTI veloc-
ity scaling therefore sits between the Kolmogorov and the
Taylor velocity scalings and this is supported by our DNS
(see figures 5 and 6).

TNTI and particle entrainment / detrainment
It is difficult to track fluctuations of the TNTI en-

trainment velocity around its mean value and we therefore
track fluid elements which cross the interface and study
their statistics. Enstrophy thresholds for the TNTI are de-
termined by the area within a given normalised enstro-
phy threshold ω2

th ≡ ω2/ωmax(x)
2
. The thresholds rele-

vant to the TNTI are those for which this area does not
vary much (see figure 8), ranging from the Laminar Su-
perlayer (LSL, Corrsin & Kistler (1955)) to the Turbulent
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Figure 6. Ratio of velocities vn/vηkol and vn/vλ at thresh-
old ω2/ω2

max = 2.5×10−7. Blue and red dashed lines: the-
oretical scalings of vn/vηkol and vn/vλ . Blue and red solid
lines: corresponding results from DNS4000.

Sublayer (TSL, Dairay et al. (2015)) region. These thresh-
olds are normalised by ωmax(x)

2
which is the time-average

maximum enstrophy in the y− z plane at streamwise po-
sition x. Fluid elements are initially seeded outside in the
potential flow region away from the interface region (see
figure 7) and are tracked with Runge-Kutta 4 scheme. This
is done in DNS3000 flow fields because the TNTI is de-
fined by sharper enstrophy jumps in DNS3000 compared
to DNS4000. Fluid element tracking was conducted for
the duration of 120H/UJ . The tracked fluid elements are
grouped into four categories: Ntt is the number of fluid
elements starting from a position where the flow is turbu-
lent at time t = 0 and ending somewhere where the flow is
also turbulent at time t; Npp is the number of fluid elements
starting from a position where the flow is potential at time
t = 0 and ending somewhere where the flow is also poten-
tial at time t; similarly, Nt p corresponds to fluid elements
going from turbulent to potential and Npt from potential to
turbulent. These four numbers are functions of time dura-
tion t and of normalised enstrophy ω2/ωmax(x)

2
values at

the start and at the end of tracking. The use of the words
“potential” and “turbulent” in these definitions are only in-
dicative and depend on threshold. For example, for a given
enstrophy threshold ω2

th, fluid elements with normalised en-
strophy values below this threshold at time t = 0 are consid-
ered to be in a potential state at that time while those with
higher enstrophy values at that time are considered to be in
a turbulent state. For this threshold and at that time there
are Nt fluid elements in a turbulent state and Np fluid ele-
ments in a potential state. The states of the fluid elements
are evaluated in same way at time t.

Nall =Ntt(t,ω2
th)

+Npp(t,ω2
th)

+Nt p(t,ω2
th)

+Npt(t,ω2
th)

(7)

We find that Nt p and Npt have a very marked peak just
outside of the interface region, on the potential side (see
figure 8). Nt p, which characterised detrainment, has a local
minimum in the outer interface region but Npt , which char-
acterised entrainment, is about constant over more than one
decade of the enstrophy thresholds at the outer side of the
interface (see figure 8). Both have a peak at the inner in-
terface region but this inner peak is by far much more pro-
nounced in the detrainment than in the entrainment case.
Nt p has no significant time dependence between the two
peaks but Npt does increase in time for all thresholds in
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Figure 7. Seeding location compared to the instantaneous
enstrophy field. Blue scatter points are initial location (t =
0) of the fluid elements. Red scatter points are locations
in the band 1.14× 10−5 < ω2

th < 2.78× 10−5 at time t =
12H/UJ . DNS3000.

agreement with the fact that entrainment dominates overall.
However, the peak of Nt p at the inner interface region also
increases very significantly with time, indicating that local
detrainment events increase with time on the turbulent side
of the interface. The ratio of entrainment to detrainment at
the peak of detrainment, i.e. Nt p/Npt where Nt p is maxi-
mum on the inner side of the interface, is around 3, which
suggests that detrainment is significant in the inner interface
region. This means that fluid elements are captured in the
inner side of the interface for a relatively long time before
being eventually entrained.

Column Breaking Method
In order to study the entrainment and detrainment char-

acteristics of the interface more locally, we introduce the
column breaking method. A column of fluid elements
is defined by the set of the fluid elements between two
iso-enstrophy surfaces, both enstrophy thresholds defining
these two iso-surfaces being within the TNTI range of en-
strophy thresholds. The normalised enstrophy at every fluid
element inside this column lies, therefore, between these
two normalised enstrophy thresholds. Defining this column
at time t0 and letting time evolve, this column breaks down
into persisting (or remaining), entrained and detrained fluid
elements. The persisting/remaining fluid elements are those
where the normalised enstrophy remains within the original
column’s range of normalised enstrophies. The entrained
fluid elements are those where the normalised enstrophy is
higher and the detrained fluid elements are those where the
normalised enstrophy is lower than the range of normalised
enstrophies inside the original column (see figure 9). En-
semble statistics were taken by considering different time
origins t0 = 12i×H/UJ(i = 1,2, ...,9) for the duration of
12H/UJ . Defining the number N(t0) of fluid elements in
the column at the initial time t0,

P+E +D =
NP(t1− t0)

NP(t0)
+

NE(t1− t0)
NP(t0)

+
ND(t1− t0)

NP(t0)
= 1

(8)
where P, E and D are, respectively, the fractions of persist-
ing, entrained and detrained fluid elements at time t1 > t0.
Figure 10 shows the time evolution of the average val-
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Figure 8. Left axis: Ntp/Nall (top, detrainment) and
Npt/Nall (bottom, entrainment) versus normalised enstro-
phy threshold ω2

th. Different colours correspond to different
times. Right axis: Area of the region in the y-z plane where
the enstrophy is above the enstrophy threshold, at different
x/H locations. DNS3000.

ues (over the ensemble statistics mentioned two sentences
above) of P,E and D for two normalised enstrophy thresh-
old bands, ω2

th = 3.16×10−7 to ω2
th = 7.74×10−7 charac-

terising the outer (towards potential) side of the TNTI and
4.08× 10−4 to 10−3 characterising the inner (towards tur-
bulent) side of the TNTI. As we can expect from the results
in the previous section, detrainment is much weaker than
entrainment at the outer side of the interface but compara-
ble to entrainment at the inner side of the interface as time
advances (see figure 10). This tendency is also evident in
figure 11 where the average P, E and D are plotted at two
times as functions of normalised threshold. Entrainment is
decreasing whereas detrainment is increasing with increas-
ing threshold, i.e. as one moves from the outer to the inner
sides of the TNTI. In fact, entrainment and detrainment tend
to equalise at the inner side of the interface. It is also signif-
icant that the persistence increases towards the inner side of
the interface, which suggests that fluid elements are some-
how trapped and spend longer times there.

Threshold crossings
To study column breaking in a little more detail, we

present histograms of numbers of consecutive fluid element
crossings through the higher and lower enstrophy sides of
the threshold band defining the initial column, see figure
12. On the lower enstrophy side of the band, even numbers
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of consecutive crossings (fluid elements which are detrained
and entrained again) occur more frequently than odd num-
bers (fluid elements which are detrained). This tendency is
much stronger at low threshold values, i.e. near the outer,
potential side, of the TNTI, than at high threshold values
near the inner, turbulent side, of the TNTI. However, the
chance of an odd number of crossings leading to a detrain-
ment event is neither zero nor negligible. On the other hand,
on the higher enstrophy side of the band, odd numbers of
consecutive crossings (fluid elements which are entrained)
occur more frequently than even numbers (fluid elements
which keep crossing and resist entrainment). Again, this
tendency is much stronger at the lower rather than at the
higher enstrophy levels of the TNTI. However the chance
of fluid elements crossing the higher side of the enstrophy
band an even number of times and thereby resisting entrain-
ment for a while is not negligible.

Finally, note that there are more consecutive crossings
in the inner, turbulent, side of the TNTI than in its outer,
potential, side. The entrainment process is much more com-
plex on the turbulent side of the TNTI where it is much less
smooth and direct than on the TNTI’s potential side. Fur-
thermore, even if rare, there are fluid element trajectories
which cross a large number of times on both sides.

Band crossings
We now investigate the number of fluid elements which

consecutively cross both sides of the band. For this analy-
sis, we fix the higher enstrophy threshold of the band to
ω2

th = 1.00× 10−3 and vary the lower enstrophy thresh-
old. The counting method is different from the one used
for threshold crossings in the previous section, see figure 13
for an indication. As one might expect, the number of fluid
elements which cross both higher and lower threshold sides
is less when the band is wider (see figure 14). This number,
even if relatively small, is definitely finite. The number of
such crossings can increase up to six when the lower enstro-
phy threshold of the present band increases to 4.08×10−4.
In fact, the total number of these crossings increases quite
fast with lower enstrophy threshold (see figure15).

Conclusion
We have established and validated a way to estimate

the average local interface velocity vn in turbulent planar
jets theoretically and numerically. The scalings of this en-
trainment velocity are closely related to the equilibrium or
non-equilibrium nature of the turbulent dissipation.

The dynamics of the TNTI are indirectly investigated
by fluid element tracking. We found smooth and dominant
entrainment in the outer, potential, side of the TNTI where
the interface is itself relatively smooth, and complex en-
trainment and detrainment dynamics in the inner, turbulent,
side of the TNTI where the interface is itself quite rough.
Entrainment and detrainment tend to balance in the inner
side of the interface, indicating some potential fluid element
trapping mechanism at the TNTI which is consistent with
the fact that the mean lateral velocity is zero on the sides of
the jet and that inner iso-enstrophy contours have relatively
high fractal dimensions whereas the fractal dimension of the
outer iso-enstrophy contours is low.

Figure 9. Example of column breaking analysis. The blue
histograms shows a column in the band of thresholds 1.14×
10−5 < ω2

th < 2.78×10−5 at time t = 12H/UJ . The orange
histograms shows its breaking down at time t = 24H/UJ .
DNS3000.
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Figure 12. Histograms of number of consecutive fluid el-
ement crossings through the lower enstrophy side (top) and
higher enstrophy side (bottom) of the threshold band for
two different threshold bands: one toward the outer, poten-
tial, side of the TNTI (ω2

th = 3.16× 10−7 to 7.74× 10−7)
and one towards the inner, turbulent, side of the TNTI
(ω2

th = 4.08×10−4 to 10−3. The total number of fluid ele-
ment samples is Nall = 3.6×105 and 1.9×105 respectively.
DNS3000.

Figure 13. Sample fluid element which crosses the band’s
borders consecutively from lower threshold border to higher
threshold border four times. DNS3000.
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