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ABSTRACT
Scale-by-scale Reynolds stress transport in a turbulent

plane Couette flow is investigated by means of direct nu-
merical simulation. For reducing computational cost, we
employ a computational domain whose spanwise length is
large enough to capture the essential dynamics of the flow
whereas the streamwise extent is as small as the minimal
length. The computation with such a reduced-size domain
is confirmed to well reproduce the statistical characteristics
of the flow including the spectral contents. We investigate
the spectral budget of the Reynolds-shear-stress transport
with a particular interest in the roles of the interscale and
spatial transport by nonlinear scale interactions, and the ef-
fect of pressure, which is extremely difficult to measure by
experiment, is also discussed.

INTRODICTION
With the significant advances in experimental tech-

niques and high-performance computation in recent years,
there have been overwhelming evidences showing that in
wall turbulence there exist very-large-scale structures away
from the wall and they become increasingly energetic with
the increasing Reynolds number (see, for example, Smits
et al., 2011, and the references therein). In particular, re-
cent experimental data from high-Reynolds-number facili-
ties such as the Prinston Superpipe and the CICLoPE fa-
cility at the University of Bologna have clearly shown the
emergence of the outer peak of the streamwise velocity fluc-
tuation at very high Reynolds numbers (Hultmark et al.,
2012; Willert et al., 2017; Samie et al., 2018), indicating
that the large-scale structures may play further important
role in wall turbulence at higher Reynolds numbers.

Such observations on the very-large-scale structures
have also raised the interest in their influences over the
smaller-scale structures in the near-wall region. Earlier
studies on such top-down effect from outer to inner re-
gions have been mainly motivated by the failure of the vis-
cous scaling of the near-wall behaviour of wall turbulence.
Hutchins & Marusic (2007) indicated that the amplitude of

small-scale events in the near-wall region is modulated by
the large-scale structures in the outer region, and the de-
gree of such interaction becomes more significant at higher
Reynolds numbers. Such inner-outer interaction is often re-
ferred to as the amplitude modulation, and there have been
many discussions on the subject, as summarised by Dogan
et al. (2018).

From the view point of the Reynolds stress transport,
such interaction between the structures with different scales
at different wall-normal positions may be expressed as in-
terscale and/or spatial transport of the Reynolds stresses.
Such scale-by-scale analysis of turbulence transport has
been performed in earlier studies based on different tur-
bulent statistical quantities such as turbulent energy spec-
tra (Lee & Moser, 2017; Mizuno, 2016) and the second-
order structure function (Cimarelli et al., 2016). Among
these recent analyses, Kawata & Alfredsson (2018) showed
that the Reynolds shear stress is transferred from smaller
to larger scales throughout the channel, and the contribu-
tion by the interscale and spatial transports can be viewed
as the influence from the small-scale near-wall structures
to the very-large-scale structures in the outer region. How-
ever, they did not investigate all the terms in the transport
equation. In particular, the behaviour of the pressure-related
terms at each scale has still not been unveiled.

In the present study, we perform direct numerical sim-
ulation (DNS) of a turbulent plane Couette flow. In this
flow very-large-scale vortical structures appear in the chan-
nel core region even at moderate Reynolds numbers (for
example, Lee & Kim, 1991; Bech et al., 1995; Kommi-
naho et al., 1996), and through the interscale and spatial
transport of the Reynolds stress the influence from the near-
wall to large-scale structures can be observed. Our analysis
follows the procedure by Mizuno (2016), and all terms of
the scale-by-scale Reynolds-stress equations are evaluated.
The roles of interscale and spatial turbulent transport and
the pressure-related terms are mainly discussed in details.
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Table 1. Computational conditions: domain size, number of grid points in each direction. The Reynolds number Rew and the
time step are Rew = 8600 and ∆t∗ = 0.004, respectively. The obtained values of the friction Reynolds number Reτ , domain size
and spatial resolution in terms of the wall units are also given.

Lx, Lz Nx×Ny×Nz Reτ L+
x , L+

z ∆x+, ∆z+ ∆y+

Lx-96 96h, 12.8h 2048×96×512 126.2 24230, 3231 11.83, 6.31 0.18–5.66

Lx-24 24h, 12.8h 512×96×512 125.8 6031, 3222 11.80, 6.29 0.26–6.14

Lx-6.4 6.4h, 12.8h 128×96×512 126.7 1622, 3245 12.67, 6.34 0.26–6.19

Lx-1.6 1.6h, 12.8h 32×96×512 126.8 406, 3248 12.68, 6.34 0.26–6.19

COMPUTATIONS
The plane Couette flow considered in the present study

is defined by a stationary bottom wall and a top wall trans-
lating with a constant speed Uw. The spacing between the
top and bottom walls is h, and x-, y-, and z-axes are taken in
the streamwise, wall-normal, and spanwise directions with
the origin of the coordinates fixed on the stationary bot-
tom wall. The velocity components in theses directions are
ũ = U + u, ṽ = V + v, and w̃ = W +w, where the upper-
and lowercase letters without tilde represent the mean val-
ues and the deviations from them, respectively.

The governing equations for simulation are the non-
dimensionalised continuity and Navier-Stokes equations for
incompressible fluid:

∂ ũ∗i
∂x∗i

= 0 (1)

∂ ũ∗i
∂ t∗

+ ũ∗j
∂ ũ∗i
∂x∗j

= −∂ p̃∗

∂x∗i
+

1
Rew

∂ 2ũ∗i
∂x∗j

(2)

where ui, p, and t are the velocity, pressure, and time,
and the superscript ∗ in the equations above stands for the
dimensionless quantities scaled by the wall velocity Uw
and/or the channel gap h. Rew is the Reynolds number
based on h and Uw: Rew = Uwh/ν (ν is the kinematic vis-
cosity of the fluid), and in all computational runs in the
present study we fix the Reynolds number at Rew = 8600.

The governing equations (1) and (2) are discretised by
the central difference method: the second- and forth-order
schemes are adopted for the wall-normal (y-) and the other
directions, respectively. For time-advance algorithm, the
second-order Crank-Nicolson method is adopted for the vis-
cous term for the wall-normal direction, while the Adams-
Bashforth method of the same order of accuracy is used for
the other terms.

Earlier studies on the turbulent plane Couette flow
showed that the typical streamwise wavelength of the very-
large-scale structure in the core region is 20–30 times of
the channel height (e.g. Tsukahara et al., 2006; Avsark-
isov et al., 2015), indicating that it is required to use an
extremely large computational domain in order to capture
all the streamwise wavelengths involved in the dynamics.
The computational cost for such ‘full’ DNS of the plane
Couette flow is, therefore, usually quite heavy even at low
Reynolds numbers. On the other hand, in some earlier stud-
ies a reduced-size computational domain was used, whose
streamwise extent is as small as the minimal length, i.e. the
least domain length to sustain the near-wall cycle, while
the spanwise one is large enough to capture several pairs
of large-scale structures (Toh & Itano, 2005; Abe et al.,

2018). In these studies, due to the massively reduced de-
gree of freedom in the streamwise direction, the large-scale
structures in the outer layer were forced to be streamwise
two-dimensional, while the degree of freedom was retained
for the near-wall structures in the inner layer. By using such
a reduced-size domain, Toh & Itano (2005) ‘simplified’ the
flow field of wall turbulence retaining both the inner- and
outer-layer structures and investigated interaction between
them. Abe et al. (2018) also demonstrated that the compu-
tation with such streamwise-minimal domain reproduce sta-
tistical characteristics of wall turbulence qualitatively well.

In the present study, we use a streamwise-reduced
computational domain following aforementioned earlier
studies for investigating interaction between the near-wall
and large-scale structures in turbulent plane Couette flow
with an affordable computational cost. In order to exam-
ine the effect of reducing streamwise domain size, several
computations were run with different streamwise domain
lengths, as summarised in Table 1. For all the computa-
tional runs the spanwise extent of the computational domain
is Lz = 12.8h, which corresponds to about 6 pairs of the
large-scale structures in the core region. The largest compu-
tational domain employed in this study has the streamwise
extent of Lx = 96h (Lx-96), while that of the smallest one
(Lx-1.6) is Lx = 1.6h, which corresponds to about 400 wall
units and is therefore as small as the streamwise minimal
length (Jimenez & Moin, 1991).

RESULTS AND DISCUSSIONS
The effect of reducing domain size

The obtained values of the friction Reynolds number
Reτ = uτ δ/ν (δ = h/2) and the domain size and spatial
resolutions scaled by the wall units are also given in Ta-
ble 1, and one can see here that reducing the streamwise do-
main extent does not significantly affect the obtained value
of Reτ . All the values of Reτ shown in Table 1 are within
±0.5 % of the values obtained in the Lx-96 case.

Figure 1 presents the profiles of the mean streamwise
velocity and Reynolds stresses obtained with the differ-
ent computational domains. As shown in Fig. 1(a) the
mean velocity profiles obtained with different streamwise
computational-domain-length are in a quite good agreement
with each other, showing almost no influences of reduc-
ing the domain size. The Reynolds stress profiles given in
Fig. 1(b) also show a qualitative agreement, while certain
quantitative discrepancies are observed in the profiles of
〈u2〉 and 〈w2〉. The values of the streamwise normal stress
〈u2〉 in the streamwise-minimal case Lx-1.6 are slightly
overestimated compared to those in the largest domain case
Lx-96, while the spanwise component 〈w2〉 in the Lx-1.6
case is underestimated throughout the channel. It is note-
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Figure 1. Profiles of (a) the mean streamwise velocity and
(b) the Reynolds stresses obtained with different streamwise
domain sizes. In both panel (a) and (b), the solid (—–),
dashed (−−), dash-dotted (−·−), and dotted (· · ·) line in-
dicate the case Lx-96, Lx-24, Lx-6.4, and Lx-1.6, respec-
tively. For readability of the figure, the results of the case
Lx-96 is shown in black, while the other cases are shown in
different colours: (a) all other cases are shown in blue; (b)
the profiles of 〈u2〉, 〈v2〉, 〈w2〉, and 〈uv〉 are shown in blue,
red, yellow, and purple, respectively.

worthy that despite of such difference in the normal stress
components the Reynolds shear stress 〈uv〉 is not affected
by reducing domain size, which results in the good agree-
ment in the obtained values of Reτ in Table 1.

Figure 2 presents space-wavelength (y-λz) diagram of
the spanwise spectra of the streamwise fluctuating veloc-
ity Euu. One can see here that the distributions obtained in
the Lx-1.6 and Lx-96 cases are in a good qualitative agree-
ment: both results show a distinct energy band located at
relatively large wavelengths around λz ≈ 2h ranging from
the near-wall to the channel central region, which clearly
corresponds to the large-scale structures in the channel core
region. An energy peak is also found in the near-wall re-
gion at relatively small wavelength; corresponding to the
near-wall region with typical spanwise scale about 100 wall
units. The magnitude of the turbulent energy spectra is
somewhat larger in the Lx-1.6 case than those in the Lx-
96 case, corresponding to the 〈u2〉 values given in Fig. 1(b).

As described above, reducing the streamwise domain
size to as small as the minimal length is shown to have an
effect to overestimate the streamwise velocity fluctuation.
Such an effect of reducing domain size on the Reynolds
normal stresses can be explained by the Reynolds-stress re-
distribution by the pressure-strain correlation. As shown
in Fig. 3 the redistribution term for the streamwise normal
component −〈p∂u/∂x〉 is suppressed in the streamwise-
minimal case (Lx-1.6) compared to the Lx-96 case. This is
attributable to the limited degree of freedom in the stream-
wise direction in the Lx-1.6 case that forces most of the
vortical structures to be two-dimensional in the streamwise
direction, i.e. ∂u/∂x ≈ 0. Corresponding to this, the span-
wise component −〈p∂w/∂ z〉 is also suppressed in the Lx-
1.6 case, indicating that the inter-component energy trans-
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Figure 2. Distribution of spanwise one-dimensional spec-
tra of streamwise velocity fluctuation Euu: (a), Lx-1.6 (the
streamwise-minimal case); (b) Lx-96. The values are scaled
based on h and Uw.
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Figure 3. Profiles of the pressure-strain correlations ob-
tained in (solid lines) the Lx-96 and (dotted lines) Lx-1.6
cases: blue, Πuu = −〈p∂u/∂x〉; red, Πvv = −〈p∂v/∂y〉;
yellow, Πww =−〈p∂w/∂ z〉.

fer between the streamwise and spanwise velocity fluctua-
tions by the pressure-strain correlation is suppressed. On
the other hand, similarly to the wall-normal velocity fluc-
tuation 〈v2〉, the wall-normal component of the pressure-
strain correlation −〈p∂v/∂y〉 is relatively not affected by
the change in the domain size.

Scale-by-scale Reynolds-stress transport
In this section, we investigate the scale-by-scale bal-

ance in the transport equation of turbulent kinetic en-
ergy and the Reynolds shear stress. The results of the
streamwise-minimal case is used in the following scale-by-
scale analysis and the scale decomposition is based on the
spanwise Fourier modes. The scale-by-scale transport equa-
tion of the Reynolds stress is written as:

DEi j

Dt
= Pi j− εi j +Φi j +Dν

i j ++Ni j (3)

where Ei j(kz) = ℜ

(
ûi(kz)û j(−kz)

)
is the spanwise

Reynolds stress spectra, where the hat and over bar stand
for the spanwise Fourier coefficient and the averaging oper-
ator in x-direction and in time, respectively, and ℜ indicates
the real part of complex quantity. Pi j, εi j, Φi j, and Dν

i j are
the spectral component of the Reynolds-stress production,
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Figure 4. Space-wavelength (y-λz) diagram of the premultiplied spanwise spectra of the turbulent kinetic energy kzEkt (Ekt =

(Euu +Evv +Eww)/2) and the scale-by-scale production kzPkt , viscous dissipation kzεkt , viscous diffusion and pressure work
kzDν

kt
+ kzΦkt , interscale transport kzT sc

kt
, and spatial transport kzT

sp
kt

obtained with the streamwise-minimal domain (the Lx-
1.6 case). The values are scaled based on Uw and h.

viscous dissipation, pressure work, and viscous diffusion,
which are respectively defined as:

Pi j = −Eik
∂U j

∂xk
−E jk

∂Ui

∂xk
, Dν

i j = ν
∂ 2Ei j

∂x2
k
, (4)

εi j = 2ν

[
ℜ

(
∂ ûi(kz)

∂x
∂ û j(−kz)

∂x

)
(5)

+ ℜ

(
∂ ûi(kz)

∂y
∂ û j(−kz)

∂y

)
− k2

z Ei j

]
, (6)

Φi j =
1
ρ

ℜ

(
ûi(kz)

∂ p̂(−kz)

∂x j
+ û j(kz)

∂ p̂(−kz)

∂xi

)
, (7)

and Ni j is the nonlinear terms defined as:

Ni j = −ℜ

(
ûiu(kz)

∂ û j(−kz)

∂x
+ û ju(kz)

∂ ûi(−kz)

∂x

)

−ℜ

(
û jv(kz)

∂ ûi(−kz)

∂y
+ û jv(kz)

∂ ûi(−kz)

∂y

)
−kzℑ

(
ûiw(kz)û j(−kz)+ û jw(kz)ûi(−kz)

)
, (8)

where ℑ stands for the imaginary part of complex quantity.
The nonlinear term Ni j represents the Reynolds-stress trans-
port in both physical and scale space, and integrating this
term for wavenumber yields the turbulent transport term:

∑
kz

Ni j =−
∂ 〈uiu juk〉

∂xk
. (9)

Ni j can be decomposed into the spatial transport T sp
i j and in-

terscale transport T sc
i j :

Ni j = T sp
i j +T sc

i j , (10)

where,
∫ h

0
T sp

i j dy = 0, ∑
kz

T sc
i j = 0. (11)

Such decompositions can be done in mutiple ways (for ex-
ample, Mizuno, 2016; Kawata & Alfredsson, 2018), and in
the present study we define the spatial and interscale trans-
ports as:

T sp
i j =

1
2

∂

∂xk

[
ℜ

(
ûiuk(kz)û j(−kz)

)
+ℜ

(
û juk(kz)ûi(−kz)

)]
, (12)

T sp
i j = Ni j−T sc

i j , (13)

similarly to the analysis by Mizuno (2016).
The spanwise spectra of the turbulent kinetic energy

Ekt = (Euu + Evv + Eww)/2 and the scale-by-scale budget
of the transport equation is presented in Fig. 4. Such spec-
tral energy budget has already been investigated in turbulent
channel flow in some earlier studies in detail (e.g. Mizuno,
2016; Lee & Moser, 2019), and the present results show
consistent tendencies in the behaviours of each term in the
near-wall region: the turbulent energy is mainly generated
by the production term Pkt in the near wall region around
y+ ≈ 20 at the spanwise wavelengths around λ+

z ≈ 100,
and most of the produced energy is directly dissipated by
the viscous dissipation there or at smaller wavelengths after
transferred by the interscale transport T sc

kt
. A part of the en-

ergy is transported to the channel central region or towards
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Figure 5. Space-wavelength (y-λz) diagram of the premultiplied spanwise cospectra of the Reynolds shear stress kzE−uv and
the scale-by-scale production kzP−uv, viscous dissipation and diffusion kzε−uv + kzDν

−uv, pressure work kzΦ−uv, interscale
transport kzT sc

−uv, and spatial transport kzT
sp
−uv obtained with the streamwise-minimal domain (the Lx-1.6 case). These values

are scaled based on Uw and h.

further wall vicinity by the spatial transport T sp
kt

and/or the
viscous diffusion Dν

kt
and dissipated there.

On the other hand, in the channel core region, the
turbulent energy production is not zero in the plane Cou-
ette flow unlike in the channel flow due to the non-zero
mean velocity gradient and the velocity fluctuations caused
by the very-large-scale structure. One can see in Fig. 4
that the production spectra are weakly positive at relatively
larger wavelengths in the channel core region, and the in-
terscale transport transfers the energy towards the smaller
scales, at which the energy is dissipated by the viscous dis-
sipation. An interesting observation here is that the inter-
scale transport T sc

kt
indicates a energy transport from smaller

to larger wavelengths in the wall vicinity y+ ≈ 8, which
may correspond to the near-wall reversed energy cascades
observed, for example, by Saikrishnan et al. (2012) and
Hamba (2018).

Figure 5 presents the space-wavelength diagram of the
Reynolds shear stress cospectra E−uv and the scale-by-scale
budgets of the transport equation. As shown here, the
cospectra distribution has the energy peaks in the near-wall
and channel-core regions, and the production is significant
at relatively small wavelengths in the near-wall region, sim-
ilarly to those of the turbulent kinetic energy. The distinct
difference of the Reynolds-shear-stress transport from that
of the turbulent energy is that the interscale transport T sc

−uv is
shown to transfer the Reynolds shear stress from the smaller
to larger wavelengths throughout the channel, unlike the tur-
bulent energy interscale transport. Such inverse interscale
transport of the Reynolds shear stress was also observed ex-
perimentally by Kawata & Alfredsson (2018).

The other characteristics of the Reynolds shear stress
transport is that the viscous dissipation plays only very mi-
nor roles throughout the channel, unlike the budget of the
turbulent energy, and it is the pressure-work Φ−uv that in-
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Figure 6. Scale-by-scale budget balance of the Reynolds
shear stress transport at the wall-normal position (a) y+ =

18 and (b) y/h = 0.28 (y+ = 72) obtained with the
streamwise-minimal domain (the Lx-1.6 case). These val-
ues are scaled based on Uw and h.

stead dissipates the Reynolds stress. In Fig. 5, it is shown
that the pressure-work spectra are negative at most wave-
lengths throughout the channel, as expected, and the nega-
tive region of Φ−uv corresponds well to the positive regions
of the productions P−uv and the interscale transport T sc

−uv.
Figure 6 gives more detailed comparison of the spectral

budget of the Reynolds shear stress transport at the wall-
normal locations (a) in the inner layer y+ = 18 and (b) in
the logarithmic region y/h = 0.28 (y+ = 72). As shown
in Fig. 6(a), the production and the pressure-work contri-
butions are dominant in the spectral budget balance in the
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near-wall region. It is particularly noteworthy that the peak
of the pressure work is located at larger wavelengths com-
pared to the production, and such tendencies are also found
in the logarithmic region as shown in Fig. 6(b). The mag-
nitude of the interscale and spatial transports are relatively
small compared to P−uv and Φ−uv, particularly in the near-
wall region as shown in Fig. 6(a). Their contributions are,
however, more than 15 % of the local level of P−uv, and and
more significant in the logarithmic region (see Fig. 6(b)).
The viscous dissipation ε−uv and diffusion Dν

−uv are not sig-
nificant at both wall-normal locations.

The profiles of the spectra budget of the Reynolds shear
stress transport indicate that the Reynolds shear stress is
produced at smaller scales and dissipated at larger scales
by the effect of pressure after the inverse interscale trans-
port by T sc

−uv (and spatial transport by T sp
−uv). This is totally

different from the transport of the turbulent kinetic energy,
where the energy is produced at larger scales, transferred
towards smaller scales by the turbulent energy cascade, and
eventually dissipated by viscosity at small scales.

CONCLUSION
In the present study, spectral budgets of the transport

equation of the turbulent kinetic energy and the Reynolds
shear stress have been investigated in the turbulent plane
Couette flow by means of DNS. In order to reduce the
computational cost, the computational domain size in the
streamwise direction was reduced to as small as the min-
imal length, i.e. the least domain size to sustain the near-
wall cycle, and the effect of reducing the domain size was
examined. The computation with the streamwise-minimal
domain reproduces fairly well the statistical characteristics
of the plane Couette turbulence including the spectral con-
tents, and the obtained spectral budget of the turbulent ki-
netic energy and the Reynolds shear stress showed con-
sistent tendencies with the results by earlier studies. The
roles of the interscale and spatial transport, which bring the
Reynolds shear stress from relatively small scales near the
wall to larger scales in the channel core region, are found
significant in comparison to the contribution of the produc-
tion by the mean flow. It is also revealed that viscosity does
not play significant role in the Reynolds shear stress trans-
port at any scale throughout the channel, and the Reynolds
shear stress is dissipated by the effect of pressure at larger
scales than those it is produced at, after the inverse inter-
scale transfer. This is in contrast to the turbulent energy
transport, where the energy is cascaded to smaller scales
and dissipated by viscosity.
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Dogan, E., Örlü, R., Gatti, D., Vinuesa, R. & Schlat-
ter, P. 2018 Quantification of amplitude modulation in
wall-bounded turbulence. Fluid Dyn. Research To ap-
pear (DOI: 10.1088/1873-7005/aaca81).

Hamba, F. 2018 Turbulent energy density in scale space
for inhomogeneous turbulence. J. Fluid Mech. 842, 532–
553.

Hultmark, M., Vallikivi, M., Bailey, S. C. C. & Smits, A. J.
2012 Turbulent pipe flow at extreme reynolds numbers.
Phys. Rev. Lett. 108, 094501.

Hutchins, N. & Marusic, I. 2007 Large-scale influences in
near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365,
647–664.

Jimenez, J. & Moin, P. 1991 The minimal flow unit in near-
wall turbulence. J. Fluid Mech. 225, 213–240.

Kawata, T. & Alfredsson, P. H. 2018 Inverse interscale
transport of the Reynolds shear stress in plane Couette
turbulence. Phys. Rev. Lett. 120, 244501.

Komminaho, J., Lundbladh, A. & Johansson, A. V. 1996
Very large structures in plane turbulent Couette flow.
J. Fluid Mech. 320, 259–285.

Lee, M. & Moser, R. D. 2017 Role of large-scale mo-
tions in turbulent Poiseuille and Couette flows. In Proc.
10th Symp. Turbulent Shear Flow Phenomena. Swisso-
tel, Chicago-IL, USA.

Lee, M. & Moser, R. D. 2019 Spectral analysis of the bud-
get equation in turbulent channel flows at high Reynolds
number. J. Fluid Mech. 860, 886–938.

Lee, M. J. & Kim, J. 1991 The structure of turbulence in a
simulated plane Couette flow. In Eighth Symp. Turbulent
Shear Flow. Tech. University of Munich.

Mizuno, Y. 2016 Spectra of energy transport in turbulent
channel flows for moderate Reynolds numbers. J. Fluid
Mech. 805 (25), 171–187.

Saikrishnan, N., Angelis, E. De, Longmire, E. K., Maru-
sic, I., Casciola, C. M. & Piva, R. 2012 Reynolds num-
ber effects on scale energy balance in wall turbulence.
Phys. Fluids 24 (1), 015101.

Samie, M., Marusic, I., Hutchins, N., Fu, M. K., Fan,
Y., Hultmark, M. & Smits, A. J. 2018 Fully resolved
measurements of turbulent boundary layer flows up to
Reτ =20,000. J. Fluid Mech. 851, 391–415.

Smits, A.J., McKeon, B.J. & Marusic, I. 2011 High–
Reynolds number wall turbulence. Annu. Rev. Fluid
Mech. 43 (1), 353–375.

Toh, S. & Itano, T. 2005 Interaction between a large-
scale structure and near-wall structures in channel flow.
J. Fluid Mech. 524 (10), 249–262.

Tsukahara, T., Kawamura, H. & Shingai, K. 2006 DNS of
turbulent Couette flow with emphasis on the large-scale
structure in the core region. J. Turbul. 7 (19).

Willert, C. E., Soria, J., Stanislas, M., Klinner, J., Amili,
O., Eisfelder, M., Cuvier, C., Bellani, G., Fiorini, T. &
Talamelli, A. 2017 Near-wall statistics of a turbulent pipe
flow at shear Reynolds numbers up to 40 000. J. Fluid
Mech. 826, R5.

6


