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Abstract
Identifying coherent structures of fluid flows is of great

importance for reduced order modelling and flow control.
Finding such structures in a turbulent flow, however, can
be challenging. A number of modal decomposition algo-
rithms have been proposed in recent years which decom-
pose snapshots of data into spatial modes, each associated
with a single frequency and growth-rate, most prominently
dynamic mode decomposition (DMD). However, the num-
ber of modes that DMD-like algorithms construct may be
unrelated to the number of significant degrees of freedom
of the underlying system. This provides a difficulty if one
wants to create a low-order model of a flow. In this work,
we present a method of post-processing DMD modes for
extracting a small number of dynamically relevant modes.
This is achieved by first ranking the DMD modes, then us-
ing an iterative approach based on the graph-theoretic no-
tion of maximal cliques to identify clusters of modes and,
finally, by replacing each cluster with a single (pair of)
modes.

1 Introduction
A number of pure-frequency modal decomposition al-

gorithms have been developed in recent years. Most no-
tably, dynamic mode decomposition (DMD) proposed by
Schmid (2010), which uses an ensemble of time-resolved
snapshots to find spatial modes, each of which is associated
with a single frequency and growth rate.

In particular, given an ensemble X = {xi}N+1
i=1 ⊂Rp of

N+1 snapshots sampled at a common timestep ∆t, consider
matrices

X =

 ↑ ↑ ↑
x1 x2 · · · xN
↓ ↓ ↓

 , X ′ =

 ↑ ↑ ↑
x2 x3 · · · xN+1
↓ ↓ ↓

 ,

DMD approximates the evolution of the data observed in
the ensemble by constructing a model of the form

xi+1 ≈UÃU>xi. (1)

over the sampling timestep ∆t. Here, U ∈ Rp×N is taken
from the singular value decomposition X = UΣV>, while
Ã ∈ RN×N is the solution of the optimization problem

Ã =U>X ′V Σ
−1 = argminA

∥∥∥X ′−UAU>X
∥∥∥2

F
, (2)

where ‖ · ‖F denotes the Frobenius norm.
Now, let Ã = PΛP−1 be an eigendecomposition of

Ã with eigenvectors pi and eigenvalues contained in Λ =
diag(λi). Since UÃU> approximates the observed evolu-
tion over a timestep ∆t, the DMD modes φi are defined by
φi = U pi, each of which is associated with a DMD eigen-
value µi = log(λi)/∆t.

In its standard implementation, DMD obtains as many
modes as the number of snapshots. Typically, one would
like to determine which of these have the most significant
contribution to the underlying dynamics. One way to do
this is to appeal to the Koopman approximation

x j ≈
N

∑
i=1

αiφiλ
j−1

i , (3)

where φi ∈ Cp are the DMD modes, normalised so that
‖φi‖2 = 1, and αi ∈ C are constants. For sequential data,
these are usually obtained by substituting j = 1 in (3) and
solving the linear least-squares problem

min
(αi)

n
i=1

∥∥∥x1−α
>

Φ

∥∥∥2

F
, (4)

where α is the column vector containing the constants αi.
This, and a similar ranking method which is more suitable
for non-sequential data were proposed by Tu et al. (2013)
as methods of scaling the modes according to the signifi-
cance of their contribution to the data. The value of |αi| is
referred to as the amplitude of the mode φi and is used as a
proxy for the its significance (see Schmid (2011) and Grilli
et al. (2012) for examples), suggesting that a sparse repre-
sentation of the flow could be built using modes with the
largest amplitudes.

However, Hemati et al. (2017) shows that the classi-
cal implementation of DMD essentially assumes that all the
noise is contained in the time-shifted snapshots X ′ and that
the prior snapshots X are uncorrupted. As a result, the DMD
can over-fit in order to accommodate for the noise in the
original snapshots, and the author’s propose the Total DMD
method to attempt to address this problem. In this paper, we
observe a similar phenomenon when DMD is applied to PIV
snapshots of a turbulent bluff body flow at high Reynolds
number, where highly damped (i.e. Re(µi)� 0), spatially
incoherent modes are nonetheless highly-ranked in the am-
plitude ordering suggested by (4).

An alternative way of finding a more sparse model for
the system is to calculate a small number of modes. The
simplest way of achieving this aim is to replace U in (2) by
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the truncation Ur ∈Rp×r whose columns are only the first r
singular vectors of X , and replacing Σ and V by analogously
truncated matrices and forming Ãr = U>r X ′VrΣ−1

r . In this
case only r modes

{φi}r
i=1 =: DMD(X ,r)

are obtained in an analogous manner to DMD, using the
eigendecompsition of Ã. A similar approach is taken by
the optimal mode decomposition (OMD) algorithm. In this
case, a projection matrix L ∈ Rp×r of user-defined rank r is
considered and the optimization problem (2) solved with U
replaced by L, and with both L and A∈Rr×r as optimization
variables. Again, this approach produces a potentially small
number of, hopefully, dynamically relevant modes.

A question still remains, however, as to which value of
the truncation dimension r to select. One could implement
a range of values of r and analyse the sensitivity of the re-
sulting decomposition, an approach followed by Baj et al.
(2015) for flow past in the near wake of a multiscale ar-
ray. However, this such a process may be lengthy. Further-
more, dramatically reducing the truncation dimension can
have the effect of modifying the spectral information associ-
ated with each mode. Figure 1 shows that the discrete-time
eigenvalues λi for a typical (specifically, the bluff body flow
considered in §3) DMD implementation and indicates that
that mode damping ratio is decreased as r decreases.

(a) (b)

(c) (d)

Figure 1. Discrete-time eigenvalues of DMD when ap-
plied to the data discussed in §3 at a) r = 2500, b) r = 500,
and OMD eigenvalues at b) r = 2500 and d) r = 500.

In other words, the benefit of constructing only a small
number comes at the cost of potentially corrupted spectral
information. Consequently, an alternative approach is to
first compute a large number of modes, then post-process
the result to either pick or generate a smaller number of
representative modes. Sparsity promoting DMD (DMDsp),
proposed by Jovanovic et al. (2014), achieves this by solv-
ing the optimisation problem

minimize
α

‖X−ΦDαV̂‖2
F + γ‖α‖1, (5)

where X is the matrix of the snapshots, Φ is a matrix whose
columns are the normalised DMD modes, Dα := diag(αi)

and V̂ := (λ
j−1

i )n
i, j=1 is the Vandemonde matrix formed

from the DMD eigenvalues. Finally, γ ≥ 0 is a parame-
ter which encourages a sparse solution to the optimization
problem. The first term in (5) amounts to fixing λi,Φi and
finding the optimal coefficients αi in (3), while the second
seeks to penalise a large number of non-zero values of αi.

DMDsp, however, does not calculate new modes or
eigenvalues. Instead, it retains a sparse subset of the original
DMD modes. The `1-norm regularisation allows the user to
specify the emphasis on the sparsity of the model, and thus
models of various orders can be constructed. Further sensi-
tivity analysis is therefore necessary to determine a sensible
number of modes to use for reduced order modelling.

In this paper, we propose an alternative method which
seeks to reduce the order of the model by analysing the spa-
tial similarity of modes. It first identifies sets of significant
modes, and then refines the original modes. The method
identifies clusters of spatially similar modes, and replaces
the modes in those cluster, with a single conjugate pair of
modes.

2 Methodology
Figure 1 suggest that, when a large number of modes

r � 1 are constructed, modal decomposition algorithms
such as DMD may produce multiple modes with similar
spectral information and, correspondingly, similar spatial
features. These similarities can directly exploited to obtain
a sparse representation of the underlying system. To do so,
however, requires a definition of mode similarity.

Assuming that the underlying data ensemble is real-
valued, DMD modes and eigenvalues are either themselves
real or come in conjugate pairs. As a consequence, the
Koopman decomposition (3) of the underlying data ensem-
ble implies that the proportion of the data described by the
model (1), that is UU>X , satisfies

UU>X ⊆
n⋃

i=1
spanR (Re(φi), Im(φi)) .

Consequently, a possible interpretation of contribution of
the DMD mode φi to the underlying data ensemble is that
subspace spanned by its real and imaginary parts. This sug-
gests a possible measure of mode similarity.

Given a DMD mode φi ∈ Cp, let Ai :=
[Re(φi), Im(φi)] ∈ Rp×2. For modes φi and φ j, the
statistic

θi j = sin−1
(
‖Ai−A j(A>i A j)‖2

)
, (6)

where ‖·‖2 denotes the largest singular value of a matrix, is
the smallest angle between the subspaces spanned by their
respective real and imaginary parts, described by Bjorck &
Golub (1973). For simplicity, we consider cos(θi j) ∈ [0,1]
as the measure of mode similarity, with 0 denoting the least
similar modes, and 1 for modes which span the same sub-
space of Rp.

Our aim is to find clusters of spatially similar modes.
To achieve this, will will draw upon techniques from graph
theory. In the following, it will be useful to express the
similarity pattern of a set of modes in a binary matrix. In
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particular, given a set {φi}n
i=1 of modes and a tolerance level

0≤ ε ≤ 1, define coefficients di j ∈ {0,1} by

di j =

{
1, if cos(θi j)−δi j ≥ ε,

0, if cos(θi j)−δi j < ε.

We write d({φi}n
i=1) := (di j)

n
i, j=1 ∈ Sn as the symmetric

matrix created by these coefficients, with the interpretation
that a pair of modes are spatially similar if di j = 1 and dis-
similar otherwise if di j = 0. Note that dii = 0, meaning that
we discount a mode’s inherent self-similarity.

2.1 A Graph Theoretical Approach
A graph G = (V ,E ) consists of a set of vertices V ⊂N

and a set of edges E ⊆ V ×V , where (i, j)∈ E implies that
there is an edge connecting vertex i to vertex j. A graph is
called undirected when (i, j) ∈ E if and only if ( j, i) ∈ E . If
V = {1,2, . . . ,n}, the edge pattern of an undirected graph
can be represented by a symmetric adjacency matrix A =
(ai j) ∈ Sn with ai j = 1 if (i, j) ∈ E and ai j = 0 otherwise.
In this case, we write (V ,E ) = (V ,A).

Now, given a set {φi}n
i=1 of DMD modes,

we may associate with them an undirected graph
({1,2, . . . ,n},d({φi}n

i=1)). The problem of identifying
clusters of modes is now re-expressed as one of finding
subsets of connected vertices. In this context, a useful
graph-theoretic notion is that of a clique which, by defini-
tion, is a complete subgraph (i.e., one where each pair of
vertices are connected by an edge). A maximal clique is a
clique which is not strictly contained in any other clique.

Maximal cliques can be obtained using the Bron-
Kerbosch algorithm Bron & Kerbosch (1973), although in
this paper we employ a more computationally-efficient vari-
ant of Tomita et al. (2006), which bounds the number of cal-
culations by O(3n/3), where n is the number of graph ver-
tices. Using maximal cliques to group modes ensures that as
many similar vertices as possible are contained within each
cluster and that the resulting decomposition is, in a sense,
minimal. In the following, given a graph G = (V ,A), we
let c(G ) ⊆ 2V denote the set of maximal cliques (which is
a set of subsets of V ).

We now describe an iterative algorithm, using the no-
tion of maximal cliques, that may be used to identify a
small number of modes of interest from a large initial en-
semble. As above, we begin with a set of DMD modes
{φi}n

i=1 and define, initially, the coarsest-possible set of

clusters C(0)
j := {φ j}, for each j = 1, . . . ,n. Next, consider

the graph G0 := ({1,2, . . . ,n},D0) with adjacency matrix
D0 = d({φi}n

i=1) and let {H(1)
j }

n1
j=1 = c(G0) be the maxi-

mal cliques. For each j = 1, . . . ,n1, we call

C(1)
j := {φi : i ∈ H(1)

j }=
⋃

i∈H(1)
j

C(0)
i

the cluster formed of the underlying modes associated with
the clique H(1)

j .
We now seek to construct a representative mode for

each cluster. To do this, for each j = 1, . . . ,n1, let P(1)
j ∈

Rp×p be the orthogonal projections onto

⋃
i∈H(1)

j

spanR(Re(φi), Im(Φi))⊂ Rp.

Next, define the projection of the full snapshot ensemble X

onto the modes of each clique by X
(1)
j := P(1)

j X . Since
each X j belongs to a subspace of Rp spanned by spatially
similar modes, we seek to find a single average representa-
tive mode by solving {φ (1)

j } := DMD(X
(1)
j ,3) 1 to obtain

a representative mode of the clique H(1)
j .

The subsequent iteration is to form cliques of the rep-
resentative modes. To do this, create the adjacency matrix
D1 := d({φ (1)

j }
n1
j=1), graph G1 =({1, . . . ,n1},D1) and max-

imal cliques {H(2)
j }

n2
j=1 = c(G1). The second-generation

clusters of modes are then defined by

C(2)
j :=

⋃
i∈H(2)

j

C(1)
i , j = 1, . . . ,n2.

This process can be repeated iteratively, detailed in Algo-
rithm 1, by forming representative modes for each new clus-
ter, forming the associated undirected graph and then ob-
taining its maximal cliques. Since we are not considering
the self-similarity of the modes, once all the similar clusters
have coalesced and the algorithm cannot find any similarity
between the representative modes, the algorithm terminates.

Algorithm 1 An iterative algorithm for sparse feature
identification

1: C(0)
j ←{φ j}, for j = 1, . . . ,n. . 0th-generation

clusters (DMD modes)
2: G0 = ({1, . . . ,n},d({φ j}n

j=1). . Initial graph.

3: {H(1)
j }

n1
j=1 = c(G0). . Initial maximal cliques.

4: k = 1.
5: while {H(k)

j }
n1
j=1 6= /0 do

6: C(k)
j :=

⋃
i∈H(k)

j
C(k−1)

i , j = 1, . . . ,nk. .

Create clusters
7: X

(k)
j ← (P(k)

j ((P(k)
j )>P(k)

j )−1(P(k)
j )>)X ,

where P(k)
j = [Re(C(k)

j ), Im(C(k)
j )]

8: {φ (k)
j }

nk
j=1← DMD(X (k)

j ,r = 3)

9: Gk = ({1, . . . ,nk},d({φ
(k)
j }

nk
j=1)) . Create

graph
10: {H(k+1)

j }nk+1
j=1 ← c(Gk) . maximal cliques of

the graph Gk
11: k← k+1
12: end while

In line 8 of Algorithm 1, one could of course substi-
tute any modal decomposition algorithm which is able to
generate a specified number of modes.

At a given iteration k, the algorithm regroups the origi-
nal DMD modes into different clusters, through the similar-
ity of the representative modes φ

(k)
j . It is important to note

that at a given iteration, one or more representative mode
may not be similar to any others. Consequently, the clusters
represented by such modes will appear in the subsequent
clusters C(k+1)

j . This does not imply that φ
(k)
s should now

1Running the decomposition at r = 3 results in one complex
conjugate pair of modes one real-valued mode. We keep the com-
plex mode only.
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be disregarded, merely that the flow features represented by
it are judged distinct from those described by the remaining
representative modes. Consequently, we require a measure
of cluster significance which can be applied irrespective of
the algorithm iteration.

2.2 Ranking Clusters
We describe a measure of significance for both individ-

ual modes and the identified clusters C(k)
j . To do this, first

find coefficients αi by solving the optimisation problem

min
(αi)

n
i=1

‖X−ΦDαV̂‖2
F

where Φ is the matrix whose columns are the normalised
DMD modes, Dα := diag(αi) and V̂ := (λ

j−1
i )n

i, j=1 is the
Vandemonde matrix formed using the DMD eigenvalues.
This is equivalent to solving (5) with γ = 0.

On their own, these values may give an inaccurate rep-
resentation of the significant features in the flow, since a
mode may have a large constant αi yet a small associated
eigenvalue |λi| � 1. For this reason, we define the measure
of significance for each mode by

σ(φi) := ‖αivi‖2 , (7)

where vi is the ith row of the Vandemonde matrix V̂ . The
significance of a cluster defined by

σ(C j) := ∑
{i:φi∈C j}

σ(φi). (8)

If two clusters join to form a larger cluster in the next
generation, i.e. if C(k)

i ,C(k)
j ⊂ C(k+1)

` , then the contribu-
tions of all the modes which make up the smaller cluster are
accounted for in σ(C(k+1)

` ). This will make C(k)
i and C(k)

j

redundant. However, if C(k)
i is not contained in any cluster

formed during the next iteration, then σ(C(k)
i ) can be used

for comparison with other clusters, including the ones cre-
ated during the later iterations.

3 Results
We consider flow past an axisymmetric bluff body at

Re = 1.88× 105, the experimental setup of which is de-
tailed by Oxlade et al. (2015). The free-stream velocity is
U∞ = 15 ms−1, base diameter D = 0.1965 m, with a length
to diameter ratio of L/D = 6.8. Before analysing these re-
sults and extracting clusters of modes using Algorithm 1,
we review the known spatio-temporal features of similar ax-
isymmetric bluff-body flows.

Berger et al. (1990) analysed experimental hot-wire
data from flows past a circular disc for 1.5× 104 ≤ Re ≤
3×105, and observed that the farthest point of the recircula-
tion bubble from the base of the disc oscillates at St ≈ 0.05
(throughout, St is the Strohual number based on body di-
ameter and free-stream velocity) about its mean streamwise
location. They dubbed this extension and contraction of the
recirculation region, the bubble-pumping mode. They also
observed a high-frequency peak at St ≈ 1.62 in the power

spectrum of the velocity time series sampled in the imme-
diate vicinity of the separated shear layer.

More recently, Rigas et al. (2014) used a POD of
the base pressure data from the same experimental setup
considered in this paper, at Re = 1.88× 105. They ob-
served an axisymmetric base-pressure structure associated
with bubble-pumping at St ≈ 0.05, an asymmetric structure
associated with vortex shedding at St ≈ 0.2, and the random
rotation of the vorticity lobes as the dominant feature of the
flow. Both Berger et al. (1990) and Rigas et al. (2014) ex-
plain the flow to be asymmetric in the rotational frame of
reference, with axisymmetry only achieved in an average
sense. Both show that the boundary of the recirculation re-
gion oscillates about its mean position at StD ≈ 0.05. How-
ever, the localised high frequency feature at St ≈ 1.6 asso-
ciated with the shear-layer instability were not observed in
the base-pressure data considered by Rigas et al. (2014).

For the current study, we compute DMD modes of a
continuous sample of 2732 snapshots X , sampled at 720
Hz, of the velocity field up to 1.72 D downstream of the
body’s base. The data ensemble consists of flow fields
where, on average, the azimuthal orientation of the wake’s
plane of asymmetry as approximated using the position of
the centre of pressure, were approximately perpendicular
to the PIV plane of view. Although the variance of this
azimuthal position is π

5 , most of the variation is concen-
trated at two short intervals, each lasting about 0.1s (com-
prising approximately 5% of the data). Since the field of
view is approximately perpendicular to the plane of asym-
metry, both axisymmetric and antisymmetric features will
be detectable. As explained above, this includes the vor-
tex shedding, shear layer instability and bubble pumping
modes. Figure 2 (a) shows the streamwise component of
the mode associated with the mean velocity field.

(a) (b)

Figure 2. Mode associated with the mean flow (a) and the
real part of the DMD mode at St ≈ 2.9 (b). The average po-
sition of the recirculation region is marked by the red dotted
line.

DMD modes were computed using r = 2731 and
ranked using, first, the classical ranking method (4) and,
second, the method of §2.2. Results of the classical rank-
ing are shown in Figure 3. Surprisingly, the second-ranked
mode at St ≈ 2.9, which is highly damped (Re(µi) =−84)
and spatially incoherent, as shown in Figure 2 (b), is ranked
higher than the dynamically important modes correspond-
ing to shedding and bubble-pumping. Contrastingly, Fig-
ure 4 shows the DMD mode ranking computed using (7),
which serves to emphasise less damped modes of increased
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spatial coherence. For improved legibility, the mode asso-
ciated with the mean flow is not included in this figure.

Figure 3. Classic ranking of the of the DMD modes’ en-
ergetic contribution, |αi|, using (4), against decomposition
Strouhal number.

Figure 4. Energetic contribution of the DMD modes (hol-
low circles) against Strouhal number. The constituent
modes of clusters C(1)

1 (red) and C(1)
2 (blue).

We now apply Algorithm 1 to create clusters of DMD
modes. Algorithm 1 is applied with a cut-off tolerance of
ε = 0.5, using DMD for the first three iterations and the
OMD algorithm (in line 8 on Algorithm 1) in subsequent it-
erations. The motivation for this choice is that DMD is com-
putationally efficient, while OMD produces extracts more
accurate spatio-temporal features, which is of importance
for later iterations. To further reduce computational cost,
clusters with whose modes have a mean Strouhal number,
written 〈St〉, greater than 2.5 are omitted from subsequent
iterations of the algorithm. With these settings, Algorithm
1 terminates after five iterations.

Although the clusters are constructed by considering
the spatial features of a mode, the two clusters highlighted
in Figure 4, which are both first generation clusters, illus-
trate that (for this dataset) modes within clusters typically
possess similar spectral information.

Figure 5 shows the aggregate energetic contribution of
the clusters at each iteration of the algorithm, computed us-
ing (8) plotted against the mean decomposition frequency
associated with that cluster. For each of the first three iter-
ations, the (locally) highly-ranked clusters have mean fre-
quencies in four distinct bands 〈St〉 ≈ 0.01-0.07, 0.15-0.25,
0.4-0.5 and 1.2-1.25. It is interesting to contrast this with
the more widely-dispersed frequency distribution of the
original DMD in Figure 4. Returning to Figure 5, the clus-
ters at 〈St〉≈ 0.15-0.25 coalesce with those at 〈St〉≈ 0.4-0.5
during the fourth iteration, rendering the third generation
clusters at 〈St〉 ≈ 0.4-0.5 redundant.

Once all the redundant clusters are removed, the re-
maining clusters can then be compared using their ranks
σ(C j). The inset plot in Figure 5 shows the clusters that re-
main after termination of Algorithm 1. The inset indicates
that Algorithm 1 obtains a sparse representation of system
where two clusters, C(5)

1 and C(5)
2 and, hence, their repre-

sentative modes, are nearly two degrees of magnitude more
significant compared to the other modes. Though consider-
ably less energetic, the third cluster is one generated during
the third iteration and has 〈St〉 ≈ 1.2. The representative
mode contains features with small length scales. Though
the significance of this mode must be further analysed, it
appears to be coherent in the vicinity of the shear layer, and
spatially incoherent otherwise.

Figure 5. Aggregate ranking of the clusters in 1st to
5th generation clusters, against the mean decomposition
Strouhal number of their constituent modes.

Figure 6. Power spectral density of the temporal coeffi-
cients of the post processed modes.

The streamwise velocity component of the the repre-
sentative modes of the three identified clusters are illus-
trated in Figure 7. Consistent with obervations of both
Rigas et al. (2014) and Berger et al. (1990), the highest-
ranked modes correspond to vortex shedding and bubble
pumping which are the dominant features of the flow in the
rotating frame of reference.

Figure 7 (a) and (b) present the real and imaginary parts
of the mode from the dominant cluster. This represents pe-
riodic vortex shedding, predominant in the region y > 0,
as a result of the slight assymetry of the flow apparant in
figure 2(a). The representative mode for the cluster with
〈St〉 ≈ 0.04 is shown in Figure 7 (c) and (d). This represents
the bubble pumping mode, with relative weights of the real
and imaginary parts able to produce average movement of
the recirculation region in both streamwise and y directions.
Finally, as observed above, the representative mode shown
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Representative modes φ
(5)
1 associated with

〈St〉 ≈ 0.2, (a-b); φ
(5)
2 associated with 〈St〉 ≈ 0.04 (c-d); and

φ
(3)
3 associated with 〈St〉 ≈ 1.2, (e-f). These correspond,

respectively, to vortex shedding, bubble pumping and shear
layer instability.

in Figure 7 appears to represent the higher-frequency shear
layer.

To examine the suitability of the resulting modes for
reduced order modelling, the time varying part of the orig-
inal snapshots of, (X −X ), were projected on the matrix
whose columns are the real and imaginary parts of the three
modes discussed above. The power spectral densities of the
resulting time series were then obtained using a Thomson
multi-taper method with 7 taper functions. Figure 6 shows
that the power spectral density for each mode has a peak
at a frequency close to the mean frequency of the cluster.
The fact that each mode has a dominant frequency can be
exploited while constructing a model based on these mode
shapes.

4 Conclusions
A method of post-processing modes for extracting

a small number of dynamically relevant modes was pre-
sented. The method groups DMD modes into clusters, us-
ing the graph-theoretic notion of maximal cliques, and iter-

atively combines similar clusters to form clusters of higher
cardinality. Through this iterative process, a sparse repre-
sentation of the flow can be found which cannot be further-
reduced in dimension. Each cluster is then represented by a
single mode. Applying this algorithm to the velocity snap-
shot data from the immediate wake of a bullet-shaped bluff
body of rotation at Re = 1.88× 105, the most significant
modes are found to correspond to vortex shedding and the
oscillatory behaviour of the recirculation bubble, consistent
with observations in the literature.
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