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ABSTRACT
We address the question of Reynolds-number depen-

dence of the “Townsend-Perry constant”, which is the slope
of the logarithmic variation of the streamwise variance in
wall turbulence. We make use of the turbulent pipe flow
and boundary layer (TBL) data available in the literature.
We find that using a wall-normal length scale, proportional
to the square root of the friction Reynolds number (akin to
the distance of the “mesolayer” from the wall) and an as-
sociated velocity scale, it is possible to obtain a Reynolds-
number similarity for the streamwise variance in a region
intermediate to the inner and outer layers. In this region,
the intermediate-scaled variance follows a logarithmic vari-
ation for which the coefficients are independent of Reynolds
number, and the extent of the log region increases with in-
crease in Reynolds number. The intermediate-scaled log-
law constants for the pipe and TBL are fairly close to
each other, suggesting a plausible “universal” behaviour for
the variance, in terms of the intermediate variables. The
consequence of Re-number invariance of the intermediate-
scaled log law is that the classical Townsend-Perry ‘con-
stant’ shows a systematic variation with Reynolds num-
ber. For the pipe flow the Townsend-Perry ‘constant’ is
seen to increase until the highest Reynolds number, whereas
for the TBL it reaches a relatively constant value for suffi-
ciently large Reynolds numbers. These are interesting find-
ings, which can have important implications towards un-
derstanding the scaling and structure of the high-Reynolds-
number wall turbulence; in particular, their implications for
the attached-eddy modelling are briefly discussed.

INTRODUCTION
Townsend (1976) proposed the attached eddy hypothe-

sis for the inertial sublayer in wall-bounded turbulent flows
(e.g., boundary layer, channel and pipe flows), valid for
asymptotically large Reynolds numbers. He considered a
random distribution of eddies to describe the statistics of
wall turbulence, with a given eddy size proportional to the
distance from the wall and its population density inversely

proportional to the distance from the wall. Using the fric-
tion velocity, uτ =

√
τw/ρ , as the velocity scale for the

range of “attached” eddies, Townsend (1976) arrived at a
logarithmic profile for the streamwise (and spanwise) ve-
locity variance in the inertial sublayer, given as

u2

u2
τ

= B1−A1ln
(

y
δ

)
. (1)

Here u is fluctuating streamwise velocity, τw is wall shear
stress, ρ is density, y is wall-normal location, and δ is a
measure of the thickness of the wall-bounded flow. For
the pipe flow, δ = R, the pipe radius and for the turbulent
boundary layer (TBL), δ = δ99, the 99% boundary-layer
thickness; the overbar indicates time averaging. A1 in equa-
tion (1) is the “Townsend-Perry constant”, which, within
the attached-eddy framework, is believed to be a universal
constant (Marusic et al., 2013).

The first successful attempt at developing a kinematic
model for wall turbulence, based on the attached-eddy hy-
pothesis, was made by Perry & Chong (1982), who used
a hierarchy of hairpin-shaped eddies to calculate the statis-
tics. The attached-eddy model of Perry & Chong (1982)
reproduced the logarithmic variation of the mean velocity
and streamwise variance as dual conditions. Many further
developments of this model have been carried out subse-
quently, e.g. Perry et al. (1986), Perry & Marusic (1995)
among others; the current state of understanding has been
reviewed by Marusic & Monty (2019).

Testing the universality and Reynolds-number invari-
ance of the Townsend-Perry constant (A1) is an area of ac-
tive research. For the experiments of Perry et al. (1986)
in the pipe flow, A1 was found to be 0.9 for the friction
Reynolds numbers. Reτ = R+ = uτ R/ν ≤ 3,900. Here su-
perscript + indicates the wall scaling. Perry & Li (1990)
found A1 = 1.03 for the TBL for Reτ = δ

+
99 = 1,193−

4,433. This value for A1 has been quoted in subsequent
studies on TBL. For example, Nickels et al. (2007) used
A1 = 1.03, assuming it to be Reynolds-number indepen-
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dent, to describe the variation of u2 with Reτ (at y+ = 300),
for Reτ = 2,000− 20,000. A1 = 1.03 as a representa-
tive value for the TBL also appears in Smits et al. (2011).
More recently, Marusic et al. (2013) used the data from
high Reynolds number wall turbulence and found A1 to be
1.23± 0.05 for the pipe and 1.26± 0.06 for TBL. Men-
eveau & Marusic (2013) obtained A1 = 1.25 for Reτ =
2,498−6,494 and 1.19 for Reτ ≈ 16000 for the TBL. Val-
likivi et al. (2015) used A1 = 1.24 for both pipe and TBL at
Reτ > 20,000, but did not determine the uncertainty limits
on this value.

In summary, A1 appears to depend on Reynolds num-
ber, at least for low Reτ , and therefore, by implication, on
the nature of the outer boundary condition. However, it is
not entirely clear if A1 is a systematic function of Reτ and
this is the question we would like to address here. Towards
this objective, we take a close look at the scaling behaviour
of the streamwise variance in an intermediate region be-
tween the inner and outer layers for the high-Reynolds-
number data on pipe flow and TBL available in the liter-
ature. We find that the length scale appropriate for the in-
termediate region, y+m , is proportional to

√
Reτ , which is the

typical “mesolayer” scaling (Sreenivasan & Sahay, 1997;
Klewicki, 2013). The velocity scale (um) is chosen to be
the rms turbulence velocity at y = ym. For the present pur-
poses, the intermediate region is defined as a region around
y/ym = 1 that is described by the scaling variables ym and
um. We prefer to call this region as “intermediate” re-
gion/layer to distinguish it from the several different con-
notations associated with the term “mesolayer” used in the
literature.

With the above length and velocity scales, the stream-
wise variance in the intermediate region of the pipe flow
and TBL shows a Reynolds-number similarity, to an excel-
lent degree, for Reτ varying over two decades (O(103)−
O(105)). The implication of this finding is that A1 in
equation (1) exhibits a systematic Reynolds-number depen-
dence; for the pipe this continues until the highest Reynolds
number, whereas for the TBL, A1 appears to reach a rela-
tively constant value for high Reynolds numbers.

SCALING FOR THE INTERMEDIATE REGION
In the following analysis we use the turbulent pipe-

flow data obtained in Princeton Superpipe using NSTAP
(Hultmark et al., 2012, 2013). For the TBL, we use
two data sets - one obtained in the HRTF experiments at
Princeton university (Vallikivi et al., 2015, VHS) and the
other obtained in the HRNBLWT experiments at Melbourne
University (Mathis et al., 2009, MHM). The data mea-
sured at Princeton have been made available for use at
https://smits.princeton.edu/data-sets/ .

To explore the scaling behaviour of the streamwise
variance in the intermediate region of the pipe flow, we
choose the length scale to be y+m = 3.5

√
Reτ and the veloc-

ity scale um =
√

u2(y = ym). The variance profiles scaled
on these variables, for the smooth-pipe data of Hultmark
et al. (2012), are shown in figure 1. There is an excellent
collapse of the profiles in a region around y/ym = 1 across
the entire range of Reynolds numbers spanning two decades
(1,985− 98,190). For the highest Reynolds numbers, the
scaling region extends from 0.15≤ y/ym ≤ 15 and the pro-
files peel off from this trend on both the sides of y/ym = 1
as Reτ decreases.

In figure 2, we plot the variance measured in a rough-

wall pipe flow, reported in Hultmark et al. (2013), using
the same choice of ym and um as for the smooth pipe.
Figure 2 also shows the smooth-wall variance profiles for
comparison. In the region for y > ym, the rough-wall
profiles exhibit Reynolds-number invariance over a decade
of Reτ (19,316− 100,530). Moreover, in this region, the
rough-wall pipe data collapses very well on the smooth pipe
data, indicating that the intermediate-scaled variance is in-
dependent of the surface condition. Note that the rough-
wall profiles do not show good collapse for y < ym, prob-
ably due to the wall being transitionally rough (Hultmark
et al., 2013).

Figure 3 shows the TBL data on streamwise variance

scaled on y+m = 3.5
√

Reτ and um =
√

u2(y = ym) – with the
same coefficient used in the definition of ym for the pipe
flow. Again there is a good collapse of the data across the
entire range of Reynolds numbers in the neighbourhood of
ym, especially for y/ym > 1. For y/ym < 1, the data of MHM
show a good scaling but the data of VHS do not show the
same degree of collapse; the reason for this behaviour is not
entirely clear. Note that the Reynolds-number range orig-
inally specified in Mathis et al. (2009) is 2,800− 19,000.
However, this is based on a different definition of boundary-
layer thickness, say δ1, which was calculated from a mod-
ified Coles law of the wake fit (Mathis et al., 2009). An
assessment of the data of MHM shows that δ1 ≈ 1.2δ99 and
this relation has been used to obtain Reτ based on δ99 in this
work (figure 3).

Selection of the constant used in the definition of ym
above is motivated by the coefficients for

√
Reτ previously

used in the definition of the mesolayer location (2
√

Reτ as
in Sreenivasan & Sahay, 1997) or in determining the lower
bound of the inertial sublayer (3

√
Reτ as in Marusic et al.,

2013). A slightly higher value of 3.5 was chosen here as
it provides a better Reτ scaling of the variance profiles for
both pipe and boundary layer data. Note that the qualitative
(and, to certain extent quantitative) nature of the results is
unaffected by the precise choice of this constant.

LOG LAW FOR STREAMWISE VARIANCE
The Reynolds-number similarity for the variance

around y = ym in figures 1, 2 (pipe flow) and figure 3 (TBL)
implies that, for y > ym, there should exist a Reynolds-
number-independent log law for the variance scaled on the
intermediate variables, given as

u2

u2
m
= Bm

1 −Am
1 ln
(

y
ym

)
. (2)

For the data in figure 1 the extent of this log law is seen to be
in the range 1.2≤ y/ym ≤ 13, or 4.2

√
Reτ ≤ y+ ≤ 0.145Reτ

for Reτ = 98,190, which is broadly consistent with Maru-
sic et al. (2013). As Reτ decreases, the extent of the vari-
ance profile in the log-law region continues to decrease.
To determine the constants Am

1 and Bm
1 in equation (2) for

the pipe flow, we fit a least-squares straight line through
the points in figure 1 (shown as a solid line) in the region
1.2 ≤ y/ym ≤ 13 for the two highest Reynolds numbers.
This gives Am

1 = 0.178 and Bm
1 = 1.005 for the pipe flow,

both of which are Reynolds-number invariant.
For the TBL data in figure 3, a straight-line is fitted in

the region 1.5 ≤ y/ym ≤ 10 for the highest Reynolds num-
bers from each of the data sets, i.e. Reτ = 15,685 for MHM
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Figure 1. Streamwise variance profiles in smooth pipe scaled ym and um; data from Hultmark et al. (2012). Here Reτ = R+.
The solid line is the log-law fit (equation 2), with Am

1 = 0.178 and Bm
1 = 1.005.
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Figure 2. Streamwise variance profiles in rough pipe scaled on ym and um; data from Hultmark et al. (2013). The open squares
correspond to the smooth-pipe data. The solid line is the log-law fit (equation 2), with Am

1 = 0.178 and Bm
1 = 1.005.
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Figure 3. Streamwise variance profiles in the TBL scaled on ym and um; data from Mathis et al. (2009)- MHM and Vallikivi
et al. (2015)- VHS. Here Reτ = δ

+
99. The solid line is the log-law fit (equation 2), with Am

1 = 0.200 and Bm
1 = 1.028.
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Table 1. Summary of the log-law constants for pipe and
TBL, along with averaged values which could represent the
plausible “universal” constants.

Case Am
1 Bm

1

Turbulent pipe flow 0.178 1.005

Turbulent boundary layer 0.200 1.028

Plausible ‘universal’ values 0.189 1.017

and Reτ = 72,526 for VHS. This gives Am
1 = 0.200 and

Bm
1 = 1.028 for the TBL. We could have as well chosen the

two highest Reynolds numbers for VHS, i.e. Reτ = 40,053
and 72,526, for fitting a straight line, which gives slightly
different numbers for the log-law constants (Am

1 = 0.204
and Bm

1 = 1.020). However since we have used two dif-
ferent data sets for the TBL, the choice of Am

1 = 0.200 and
Bm

1 = 1.028 gives a more representative fit for the two sets
(solid line in figure 3), and we use these numbers in the
following.

Note that, provided the Reynolds-number similarity in
the intermediate region is correct, the value of Am

1 is inde-
pendent of the choice of the numerical constant in the def-
inition of ym; the value of Bm

1 , however, depends on this
choice (equation 2). Furthermore, the precise values of Am

1
and Bm

1 would depend upon the range of y/ym chosen to fit
the log law. However, the precise values of Am

1 and Bm
1 are

not relevant to the main conclusion of this paper and there-
fore we do not attempt to determine uncertainty bounds on
these constants.

The numerical values of Am
1 and Bm

1 obtained above for
the pipe flow and TBL are quite close to each other and
it is therefore interesting to ask if the intermediate scaling
exhibits a ‘universal’ behaviour. In figure 4, we compare
the variance profiles for the pipe flow and TBL, with in-
termediate scaling. A fairly good degree of collapse is ob-
served near ym for y/ym > 1; there is much more scatter
for y/ym < 1. The solid line corresponds to the log-law fit
using constants: Am

1 = 0.189 and Bm
1 = 1.017, obtained by

averaging over the corresponding values for the pipe flow
and TBL. This log-law fit is seen to describe the variation
for the smooth and rough pipe flows as well as the TBL rea-
sonably well. These values for Am

1 and Bm
1 may therefore

be considered as approximations to the “universal” log law
constants (to within±6% for Am

1 and±1% for Bm
1 ), with in-

termediate scales, should a universal log law exist for wall
turbulence. The values of Am

1 and Bm
1 calculated above for

different cases have been summarized in table 1.
The classical log-law coefficients, A1 and B1 (equation

1) can be readily expressed in terms of Am
1 and Bm

1 : it may
be rearranged as follows:

(
u2

u2
m

)(
u2

m

u2
τ

)
= B1−A1ln

[(
y

ym

)(
ym

δ

)]
. (3)

Here, we take δ = R for the pipe flow and δ = δ99 for the
TBL. Equation (3) leads to the following relation between
the two sets of coefficients:

A1 = Am
1

(
u2

m

u2
τ

)
, B1 =

[
Am

1 ln
(

ym

δ

)
+Bm

1

](
u2

m

u2
τ

)
. (4)

Since Am
1 and Bm

1 are constants independent of
Reynolds number, equation (4) shows the dependence of
A1 and B1 on the ratios of scaling variables um/uτ and
ym/δ , which are functions of Reτ . The variation of um/uτ

with Reτ for the smooth pipe and TBL is shown in figure
5(a). For the pipe flow um/uτ continues to increase un-
til Reτ = O(105), whereas for the TBL it seems to settle
down to a more or less constant value for Reτ > 20,000; for
both flows, this ratio exhibits a strong Re-number depen-
dence for Reτ < 20,000. The Re-number dependence of
ym/δ is clear from its definition: ym/δ = 3.5/

√
Reτ . This

suggests that the classical log-law coefficients A1 and B1
should show a systematic Reynolds-number dependence.
This expectation is borne out by the variation in value of
A1 and B1 calculated from equation (4), and plotted in fig-
ures 5(b) and (c); for this, we have used Am

1 = 0.178 and
Bm

1 = 1.005 for the pipe and Am
1 = 0.200 and Bm

1 = 1.028
for the TBL (table 1). Figure 5(b) shows that there is a sig-
nificant variation of A1, i.e. the Townsend-Perry ‘constant’,
for Reτ < 20,000. For Reτ > 20,000, A1 continues to in-
crease for the pipe flow whereas for the TBL, it reaches a
relative constant value for Reτ & 10,000. It is interesting to
note that, for Reτ > 70,000, the values of A1 for the pipe
flow and TBL are quite close to each other (in the range
1.23−1.24). Needless to say, the trend in A1 replicates the
trend in um/uτ , by virtue of equation (4). On the other hand,
B1 shows a comparatively larger variation at large Reτ as
seen in figure 5(c).

The log-law fits (equation 1) obtained by using the co-
efficients shown in figure 5 are plotted in inner variables
in figures 6(a) and (b), for pipe flow and TBL respectively.
As can be seen, the log-law fits match the data well over
the entire Reτ range for both the flows. Note that these
are not individual log-law fits, but those obtained by using
A1 and B1 calculated from equation (4) for constant val-
ues of Am

1 and Bm
1 , for each flow. The advantage of this

exercise is that, once the limits on y/ym for the determi-
nation of Am

1 and Bm
1 are fixed, the extent of the classical

log law for the variance is determined automatically (fig-
ure 6). In particular, the lower limit of the log law is found
to scale on

√
Reτ . Figures 5 and 6 confirm the systematic

dependence of the Townsend-Perry ‘constant’ on Reynolds
number for the pipe flow and the TBL. However, it is not
yet clear whether it has reached an asymptotic value at the
highest Reynolds numbers.

DISCUSSION
The present analysis enables us to reconcile the dif-

ferent values for the Townsend-Perry ‘constant’ reported
in the literature. For the pipe flow, we obtain A1 = 1.243
for Reτ = 98,190 (figure 5b) which is entirely consistent
with A1 = 1.25 reported by Hultmark et al. (2012) and
A1 = 1.23± 0.05 reported by Marusic et al. (2013) at the
same Reynolds number. Moreover, A1 = 0.882 obtained
for Reτ = 3,334 here for the pipe flow, compares well with
A1 = 0.9 for Reτ ≤ 3,900 reported in Perry et al. (1986).

With regard to the TBL, Vallikivi et al. (2015) found
A1 = 1.24 works well for describing the logarithmic pro-
file for the variance for Reτ > 20,000. The present analy-
sis finds A1 in the range 1.22− 1.238 for Reτ = 25,062−
72,526 for the data of VHS (figure 5b) which is consis-
tent with the value of Vallikivi et al. (2015). For the high-
est Reynolds number, the data of MHM (Reτ = 15,685
based on δ99) give A1 = 1.204, which compares well with
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Figure 4. Comparison of the intermediate-scaled streamwise variance profiles for the pipe flow and TBL. The solid line is the
log-law fit (equation 2), with averaged values of the constants: Am

1 = 0.189 and Bm
1 = 1.017; see table 1.
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Figure 5. The variation with Reτ of (a) um/uτ , (b) A1, (c) B1; A1 and B1 have been calculated from equation (4).

A1 = 1.19 reported by Meneveau & Marusic (2013) at the
same Reτ . At lower Reynolds numbers, Meneveau & Maru-
sic (2013) give A1 = 1.25 for the MHM data, which is
much higher than the values obtained here: 0.94− 1.12
for Reτ = 2,353− 6,115. The higher value of A1 reported
by Meneveau & Marusic (2013) for the lower Reτ could
be attributed to the fact that they used a fixed lower limit
of y+ = 400 to fit the log law, whereas the present work
uses the lower limit to be proportional to

√
Reτ ; see also

Marusic et al. (2013). Note that A1 = 0.94− 1.12 ob-
tained for Reτ = 2,353−6,115 in this work is entirely con-
sistent with A1 = 1.03 reported by Perry & Li (1990) for
Reτ = 1,193− 4,433. Finally, Marusic et al. (2013) have
reported A1 = 1.26±0.06 for the TBL at δ

+
99 ≈ 15,000; the

present value of 1.204 for a similar Reτ falls within this un-
certainty band (towards the lower end).

The present results clearly have implications for the

attached-eddy hypothesis. Marusic et al. (2013) argued that
the Reτ -dependence of the lower limit for the log law should
not be regarded as incompatible with Townsend’s theory;
it means that the range of the self-similar attached eddies
is given by lo � y� δ , with l+o ∼

√
Reτ (Marusic et al.,

2013). The same considerations would hold for the present
analysis in which the start of the log law scales on

√
Reτ .

Our main finding, however, is that the range of energy con-
taining eddies, which contribute to the log law (e.g. the
type-A eddies in the attached-eddy model; see Marusic &
Monty, 2019), appear to scale on the intermediate variables,
ym and um, instead of the classical variables δ and uτ . The
success of the intermediate scaling, which provides a local
description of the inertial sublayer, supports the self-similar
nature of the attached eddies. It is not clear, however,
whether the eddies that scale on um are physically attached
to the wall; see the discussion in Marusic & Monty (2019).
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Figure 6. Streamwise variance profiles in inner variables
for (a) smooth pipe, (b) TBL. The solid lines are the classi-
cal log-law fits (equation 1), using the values of A1 and B1
obtained from equation (4) using fixed Am

1 and Bm
1 .

It is interesting to note that ym is typically above the wall-
normal location of the outer-spectral peak, where the energy
of the very-large-scale motions (VLSMs)/superstructures
peak (Vallikivi et al., 2015a). Thus the heirarchy of the
VLSMs/superstructures, with progressively decreasing en-
ergy with wall-normal distance, could be the plausible can-
didates for the ‘attached’ eddies; see also Hwang (2015) for
a somewhat different picture of the candidate eddies.

CONCLUSIONS
We have shown that an intermediate length scale, y+m =

3.5
√

Reτ , and an associated velocity scale, equal to the
rms fluctuating velocity at y = ym, result in a Reynolds-
number similarity for the streamwise variance in the inter-
mediate region of the pipe flow as well as the TBL. There
exists a Reynolds-number independent logarithmic law in
the intermediate-scaled variance, for y > ym, with a con-
stant (i.e. Re-number invariant) log-law slope. This trans-
lates into a systematic variation of the classical Townsend-
Perry ‘constant’ with Reynolds number for both pipe and
TBL. The present analysis provides a framework for recon-
ciling the different values of the Townsend-Perry ‘constant’
available in the literature - they are most likely due to the
different Reynolds numbers used in different studies. The
present findings can have interesting implications towards
the attached-eddy modelling in wall turbulence, in terms of
choosing the scaling and form for the “attached eddies”.
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