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ABSTRACT
This paper describes a technique to experimentally measure the

two-dimensional energy spectra of the streamwise velocity in wall-
turbulence. The technique is validated at low Reynolds numbers
using Direct Numerical Simulation (DNS) data. It is found that a
correction to the high wavenumber range of the energy spectra is re-
quired owing to physical limitations on minimum probe separation.
The measurement technique and DNS-based correction scheme is
employed in the University of Melbourne High Reynolds number
(Re) wind-tunnel to measure the 2D spectra at high Re for the first
time. The results are compared with attached eddy simulation mod-
els, showing that hierarchies of high-aspect ratio eddies are required
to accurately capture the large-scale energy behaviour.

INTRODUCTION
Obtaining multi-dimensional statistical turbulence quantities

at high Reynolds number is a notoriously difficult problem. Direct
Numerical Simulation (DNS) removes the difficulty of multiple
dimensions, but does not yet reach the high Reynolds numbers of
wind-tunnel facilities. Most analysis of high Reynolds number
turbulence data is limited to single-point measurements (or a
small number of points of data). This constrains data analysis and
can lead to misunderstanding of important flow behaviours. An
example is the energy spectra; almost all spectra available at high
Reynolds number (Reτ > 10000) is one-dimensional. A common
observation from these data is a lack of evidence for self-similarity
of the inertial scales (Nickels et al., 2005; Rosenberg et al.,
2013). However, Davidson et al. (2006) highlighted that the 1-D
energy spectra might not be an ideal tool to observe self-similarity.
Their work suggested that aliasing could contaminate the 1-D
streamwise spectra by artificially shifting the energy to lower
wavenumbers. A 2-D spectrum details the contribution of both the
streamwise (λx = 2π/kx, where kx is the streamwise wavenumber)
and spanwise (λy = 2π/ky, where ky is the spanwise wavenumber)
length scales to the total turbulent intensity, but it is not easily
obtained experimentally. Another way to describe the problem with
the 1-D spectrum is that it is a line integral of a 2-D spectrum and
does not reveal any information along the direction of integration.
For example, a 1-D streamwise spectrum only provides the energy
contribution by a particular streamwise length scale, λx, and does
not inform us of the range of λy associated with that particular λx.
This leads to the aforementioned aliasing in 1-D spectra. The 2-D
spectrum is devoid of such aliasing errors. Here we demonstrate
a method to measure the 2-D spectrum in a wind-tunnel boundary
layer.

This study is partly motivated by recent work by the authors:
from dimensional considerations, Chung et al. (2015) argued that,
in order to have a k−1

x behaviour in the 1-D spectrum, a region
of constant energy in the 2-D spectrum should be bounded by

λy/z∼ f1(λx/z) and λy/z∼ f2(λx/z) where f1 and f2 are identical
power laws. At low Reynolds number, Del Alamo et al. ? reported
that such a region of constant energy is bounded at larger scales by
a square-root relationship of the form λy/z ∼ (λx/z)1/2. The at-
tached eddy hypothesis of Townsend (1976) was considered, where
hierarchies of geometrically self-similar eddies (whose lengths
scale with z) suggest a region in the 2-D spectra at high Reynolds
numbers to be bounded by a linear relationship, λy ∼ λx. Here we
will examine the first measured 2-D spectra of wall-turbulence at
high Reynolds number in the search for evidence for or against
self-similarity in the large-scales.

It should be noted that, throughout this study, x, y and z denotes
the streamwise, spanwise and wall-normal directions respectively
and u, v and w denotes the corresponding velocity components. Su-
perscript ‘+’ indicates the normalisation using viscous length and
velocity scales which are ν/Uτ and Uτ respectively, where ν is the
kinematic viscosity and Uτ is the friction velocity.

EXPERIMENTAL SETUP
The low Reynolds number experiments are conducted in the

open return turbulent boundary layer wind tunnel at The University
of Melbourne (the ’GWT’). The facility is a zero pressure gradient
(ZPG) tunnel with a test section volume of 6.7× 0.94× 0.38 m3.
The higher Reynolds number experiments are conducted in the
High Reynolds number boundary layer wind tunnel (HRNBLWT).
Further details of each experiment are provided in table 1. Here we
define the boundary layer thickness, δ as the wall-normal distance
where the mean velocity achieves 99 % of the freestream velocity.
Further, the friction velocity, Uτ , is obtained by a Clauser chart
method using the log law constants, κ = 0.4 and A= 5.

The low Reynolds number experimental technique employs
two single-wire hot-wire probes: HW1 and HW2 (as shown in
figure ). The length (l) and diameter (d) of the hot-wire sensors are
500µm and 2.5µm respectively to maintain an l/d ratio of 200 and
l+ ≈ 17. The hot-wires are operated using an in-house Melbourne
University constant temperature anemometer (MUCTA). For suf-
ficiently converged statistics, the hot-wire velocity measurements
are recorded for 32000 boundary layer turnover times(TU∞/δ ).

Facility U∞ (m/s) δ (m) Uτ (m/s) Reτ z+

GWT 15 0.056 0.545 1950 100

GWT 15 0.056 0.545 1950 200

HRNBLWT 40 0.337 1.231 26090 418

Table 1. Details of experimental data.
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Figure 1. Schematic of the arrangement of hot-wires to measure
the spanwise correlation in the low Reynolds number GWT.
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Figure 2. Schematic of the arrangement of hot-wires to measure
the spanwise correlation in the high Reynolds number HRNBLWT.

Both hot-wires are calibrated immediately before and after each
measurement to allow correction for drift in the hot-wire voltage
during the experiment. HW1 is calibrated in the freestream with
respect to the known mean velocities obtained with a Pitot-static
probe. Since the arrangement did not allow HW2 to move to the
freestream, calibration information from HW1 is used to calibrate
HW2, while placed inside the boundary layer. This is achieved by
placing both wires at the same wall-normal location. Since this
calibration is carried out inside the turbulent boundary layer, the
sampling time is increased compared to the freestream calibrations
to ensure the convergence of mean velocity.

At the start of the measurement, HW1 and HW2 are positioned
close to each other, at a fixed wall-normal location, as shown in
figure . dyinitial corresponds to the initial centre to centre spacing
between the hot-wire sensors. For the present measurements, both
HW1 and HW2 are sampled simultaneously, with HW1 at a fixed
position, while HW2 is traversed in the spanwise direction upto a
final spacing of ∆y∼ 3.5δ (see figure ). To acquire spatial informa-
tion at smaller spanwise distances the spanwise traversing mecha-
nism of HW2 is traversed on a logarithmic scale.

For the higher Reynolds number experiment, a similar sys-
tem is employed, however, there are two stationary wires and two
traversing wires (see figure 2) to halve the duration of an experi-
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Figure 3. (a) Normalised 2-D correlation constructed from the ve-
locity time series, (b) 2-D spectra obtained from the 2-D correlation
and (c) 1-D streamwise (—) and 1-D spanwise (- - -) spectra ob-
tained by integrating the 2-D spectra.

ment and halve the required spanwise traversing length. This was
necessary owing to physical limitations regarding the infrastructure
of the wind-tunnel. The experimental method is identical, but with
HW1 and HW2 traversing together in the spanwise direction, while
HW3 and HW4 are fixed in position.

CALCULATING 2D SPECTRA FROM SINGLE POINT
HOT-WIRE DATA

The velocity time-series of any pair of hot-wires separated by a
spanwise distance ∆y can be used to calculate the two-dimensional
two-point correlation if Taylor’s frozen turbulence hypothesis is in-
voked to convert the temporal data to spatial. The local mean veloc-
ity, U , is used as the convection velocity such that the streamwise
spacing between data points is ∆x =U∆t, where ∆t is the sampling
period of the hot-wire signal. By traversing wires in the spanwise
direction (i.e. for a range of ∆y) we can obtain the full 2D two-point
correlation of streamwise velocity,

Ruu(∆x,∆y) = u1(x,y)u2(x+∆x,y+∆y). (1)

Figure 3(a) shows an example of the 2-D correlation normalized by
the variance of the velocity time series.

A 2-D Fourier transformation of the computed 2-D correlation
yields the 2-D spectrum of streamwise velocity fluctuations as a
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function of streamwise and spanwise wavenumbers, kx and ky,

φuu(kx,ky) =
∫ ∫

∞

−∞

Ruu(∆x,∆y)e− j2π(kx∆x+ky∆y)d(∆x)d(∆y). (2)

Here j is a unit imaginary number. Figure 3(b) shows the 2-D en-
ergy spectrum of streamwise velocity fluctuations calculated using
the above procedure (note that wavelengths, λx and λy are used in
this figure for ease of interpretation). The one-dimensional spectra
for a specified streamwise wavelength can be calculated by sim-
ply integrating the 2-D spectra across all spanwise wavelengths for
that streamwise wavelength and vice-versa for the 1-D spectra for a
specified spanwise wavelength. Figure 3(c) shows the 1-D spectra
of u as a function of streamwise and spanwise wavelengths obtained
from the 2-D spectrum (shown in figure 3(b)). The area under the
1-D streamwise and spanwise spectra is equivalent to the variance
of the streamwise velocity at that wall-normal location.

The results obtained from the experiments are validated against
the DNS of ZPG boundary layer data of Sillero et al. (2014). The
same technique described above is employed using the DNS data
to first calculate the 2-D two-point correlation map and then apply
a Fourier transform to determine the 2-D spectra (even though the
2-D spectra can be calculated directly). In other words, we sim-
ulate the hot-wire experiment using the DNS velocity fields. By
selecting streamwise velocity traces at the same spanwise spacing
as in the experiment, the effect of hot-wire minimum spacing and
chosen spacings during the experiment can be checked (at least
for the low Reynolds number case). Figure 4 shows a compari-
son between a contour of constant energy from the 2-D spectra, at
kxkyφuu/U2

τ = 0.15, from both experiments and DNS.

Figure 5. 1-D spanwise correlation using truncated DNS data with
correlation values for ∆y < dyinitial linearly interpolated.

The results show good agreement between the experimental
(· · · ) and DNS (—) results at z+ ≈ 200 (figure 4b), however, closer
to the wall (z+ ≈ 100) a larger disagreement in the small scale re-
gion is present (figure 4a) due to the finite initial spacing (dyinitial)
between the hot-wires (see figure ). Ideally, dy+initial should be suffi-
ciently small so that the smallest scales are well resolved. However,
for the present experimental technique, it is not physically possi-
ble to reduce dy+initial below a limit where the two hot-wires come
into contact with each other. The minimum hot-wire spacing means
that there are no two-point correlation values for ∆y = 0 – dyinitial ;
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Figure 4. Comparison of experimental and DNS results for
kxkyφuu/U2

τ = 0.15 at Reτ ≈ 2000 and, (a) z+ ≈ 100 and (b) z+ ≈
200; where, · · · · · · uncorrected experiment; —— corrected experi-
ment and —— DNS

these correlation values are needed are obtained by simple linear
interpolation, meaning the small-scale energy spectra is incorrect.
The affected region of the 2-D spectra diminishes for large wall-
distance since the smallest energetic scales increase in size with
distance from the wall. Because the area under the 2-D spectra is
equal to the variance of the velocity, unresolved small-scale energy
is redistributed throughout the spectrum – even to the larger scales.
Using the DNS data, we can determine a correction to the 2-D spec-
tra as outlined below.

The first step is to calculate the two-point correlation of veloc-
ity using DNS data with minimum spanwise spacing equivalent to
dyintitial following the experiment. The missing two-point correla-
tion values between ∆y = 0 – dyinitial are linearly interpolated in the
same way as done for the experiment. This is illustrated for ∆x = 0
in figure 5. The 2-D spectra is then calculated with the small-scale
interpolated 2-D two-point correlation of streamwise velocity. The
result is shown in figure (b) and can be easily compared with the
true 2-D spectra shown in figure (a). Figure 5 shows the 1-D corre-
lation in the spanwise direction obtained using DNS data.

The difference (∆kxkyφ+
uu) of the interpolated and original 2-D
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Figure 6. (a) 2-D spectra obtained from the original DNS correlation, where and represent the relationships λy/z ∼ λx/z and
λy/z ∼ (λx/z)1/2 respectively as reported by Del Alamo et al. ?, (b) 2-D spectra obtained from the interpolated DNS correlation and (c)
difference between (a) and (b).

spectra is computed and shown in figure (c). This difference corre-
sponds to the amount of energy redistributed due to dy+initial . This
difference can be added to the experimental data to give the cor-
rected 2-D spectra. Namely,

∆kxkyφ
+
uu =

[
kxkyφuu

U2
τ

]
DNS,o

−
[

kxkyφuu

U2
τ

]
DNS,i

(3)[
kxkyφuu

U2
τ

]
EXP,c

=

[
kxkyφuu

U2
τ

]
EXP

+∆kxkyφ
+
uu. (4)

where the subscripts DNS,o and DNS,i represent original and interpo-
lated DNS results respectively. Similarly, EXP,c and EXP represents
the corrected and uncorrected experimental results respectively.

Figure (c) shows that the differences due to the minimum spac-
ing is largest near λ+

y corresponding to dy+initial (see white dashed
line in figure ), as expected. However, it s also evident that the dif-
ference is not limited to small scales and is, in fact, spread over a
large range of wavelengths. The correction is effective on the hot-
wire data and an example is shown in figure 4, where a contour of
constant energy from the corrected experimental spectrum (—) is
compared against the DNS(—) as shown in figure 4. Much better
agreement with DNS is observed at smaller scales compared with
the uncorrected experimental spectrum (· · · ). It is also evident that
the correction is minimal at the larger wall-distance.

The correction method determined with low Reynolds number
DNS data is expected to be valid at higher Reynolds numbers since
inner-scaled energy contributions from small scales are Reynolds
number invariant (Hutchins et al., 2009). Therefore, this correction
is applied to all the experimental data presented in this paper for
completeness; however, no conclusions drawn in the following are
dependent on the effects of the correction scheme.

2-D SPECTRA FOR LOW AND HIGH Re
Figure 7 shows the experimentally determined 2-D spectra for

low and high Reynolds numbers at the base of the logarithmic re-
gion 2.6

√
Reτ , corresponding to z+ = 100 and 420, respectively.

The low Reynolds number data follow the same trends as ?, namely,

the energetic ridge of the spectra follows a λy/z ∝ λx/z0.5 be-
haviour. This is problematic from a classical viewpoint, because
such a scaling discounts self-similarity of the large-scales. Self-
similarity of the inertial (large) scales is fundamental to many tur-
bulence models and various hypotheses, for example, the attached
eddy hypothesis. However, the high Reynolds number data show a
surprisingly different trend in the largest scales. There appears to
be a shift in the high-energy contours back toward the λy ∝ λx be-
haviour expected of self-similar large-scales. This result suggests
that self-similarity becomes evident at very high Reynolds numbers
only.

ATTACHED EDDY MODELLING
Townsend’s attached eddy hypothesis formed the basis of the

Perry & Chong (1982) Attached Eddy Model. One of the tenets of
the hypothesis is that the energy containing motions in the logarith-
mic region are self-similar. That is, their energy per unit area is con-
stant and their lengths scales follow a geometric progression. Given
the above observation that the largest-scales show self-similar be-
haviour at high Reynolds number, we here utilise the attached eddy
model to check the expected trends of the spectrum for a purely
self-similar flow structure. In this exercise, hierarchies of represen-
tative eddies are used to model the dominant energy contributions
in the turbulent boundary layer. The modelling follows the proce-
dure given in Perry et al. (Perry et al., 1986), however, here we will
consider 3 types of representative structures: i. A single hairpin-
shaped eddy as in Perry et al.; ii. a packet of hairpin-shaped eddies
with length to width ratio ∼ 3 and; iii. a packet of hairpin-shaped
eddies with length to width ratio ∼ 6 designed to match the ratio
of aspect ratio of the highly energetic ridge evident in figure 7(b).
Schematics of the representative eddies and a slice through the ve-
locity field at 0.2 times the largest eddy height are shown in figure 8.
The resulting 2-D spectra from these simulations is shown in figure
9. For comparison, the figure includes the same red guidelines from
figure 7(b) showing square-root (red dashed) and linear (red solid)
relationships between widths and lengths of eddies that described
the experimental data. It is clear that the single self-similar eddies
do not describe the experimental 2-D spectra very well and that the
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Figure 7. 2-D spectra of streamwise velocity at 2.6
√

Reτ for (a)
Low Reynolds number (Reτ ≈ 2000) and (b) High Reynolds number
(Reτ ≈ 26000). Blue solid lines indicate λy ∝ λx, blue dashed lines
indicate λy/z ∝

√
λx/z

higher aspect ratio (longer packets) provide a superior match to the
experimental data. Interestingly, the spread of energy across span-
wise wavelengths for a given streamwise wavelengths is qualita-
tively similar to the experimental data, even though only one repre-
sentative eddy is used in the simulation. This is possibly only due
to the fact that eddy velocity signatures are not truly sinusoidal in
either the streamwise or spanwise directions.

CONCLUSION
Two-dimensional spectra of the streamwise velocity compo-

nent for low and very high Reynolds number (Reτ = 26000) are
measured in a wind-tunnel boundary layer. The low Reynolds num-
ber data agree very well with DNS studies, in particular with the
2D spectra documented in del Álamo et al. (2004). At much higher
Reynolds numbers, we observe a distinct change in behaviour of
the large-scale energy: the contours of 2-D spectra for small scales
follow a similar behaviour to the low Reynolds number case, how-

Figure 8. Schematics of the representative eddies used in attached
eddy modelling. The contours show qualitatively the velocity field
near the base of the eddies. Three simulations were conducted with
a single eddy (top), a small packet (middle) and a large packet (bot-
tom).

ever, the large streamwise and spanwise wavelengths (λx and λy)
are observed to tend towards a λy ∼ λx relationship. Where many
previous have not found evidence for self-similarity, these new high
Reynolds number data provide some confidence that self-similarity
at practically high Reynolds numbers will exist.

The attached eddy model of Perry & Chong is used for compar-
ison with the experimental data. It is shown that by choosing an ap-
propriate grouping (packet) of representative eddies, the dominant
trends of the high Reynolds number 2D spectra can be reproduced
from a model that relies on the self-similarity of large-scale vortical
structures.
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Reτ for (a) single representative eddy, (b) packets
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eddies with aspect ratio (length to width) ∼ 6. Reτ ≈ 26000 for the
model. Solid and dashed lines as in figure 7.
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