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On the new mode of instability in high-speed boundary layer flows
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ABSTRACT
The new mode of instability found by Tunney et al. (2015)

is studied with viscous stability theory in this article. When the
high-speed boundary layer is subjected to certain values of favora-
ble pressure gradient and wall heating, a new mode becomes un-
stable due to the appearance of the streamwise velocity overshoot
(U(y)>U∞) in the base flow. The present study shows that the new
mode can hardly coexist with conventional first mode and Mack’s
second mode, however, may lead to the transition of new scenarios.

1 Introduction
The mechanism of high-speed laminar-turbulent flow transition

is far from fully understood (Fedorov, 2011). One important reason
is the diverse routes of the transition process that is in turn influen-
ced by multifarious environmental conditions. Among them, modal
stability is generally considered the fundamental mechanism and
relatively well-studied. The representative examples are Tollmien-
Schlichting waves in (quasi-) parallel flows (Schlichting & Gersten,
2017), Mack’s second modes in hypersonic flows (Mack, 1984),
cross-flow modes in three-dimensional boundary layers (Saric et al.,
2003) and Görtler modes over concave surfaces (when Reynolds
number is large) (Saric, 1994). Under certain conditions, perturba-
tions (generated through receptivity mechanism) get amplified with
modal instabilities causing the flow close to transition when their
amplitude becomes large. However, even after amounts of studies,
the knowledge on this fundamental modal stability is still insuffi-
cient.

Compared with zero pressure gradient, favorable pressure gra-
dient (hereafter referred to as FPG) significantly stabilizes the boun-
dary layer in both incompressible and compressible flows (the first
mode as well as Mack’s second mode). This is supported by a
number of studies, e.g., with direct numerical simulation (Kloker
& Fasel, 1990; Bech et al., 1998; Franko & Lele, 2014), linear sta-
bility theory (Malik, 1989; Zurigat et al., 1992; Masad & Zurigat,
1994) and very recent experiments (Tokugawa et al., 2015; Costan-
tini et al., 2016). Hence, in the review by Reed et al. (1996), the
instability of boundary layer with FPG is described as “very weak, if
it exists at all”. In fact, with FPG, the profile of the base flow U(y)
becomes fuller and the thickness of the boundary layer is decrea-
sed. This is mainly responsible for the stabilization of the boundary
layer.

On the other hand, wall-heating/cooling is one of the common
passive flow control methods used on various occasions. Its influ-

ence on boundary layer stability has been well documented (see re-
views by Mack, 1987; Reed et al., 1996). In contrast to the adi-
abatic condition, wall heating can destabilize the first mode while
stabilizing Mack’s second mode. Wall cooling, instead, has oppo-
site effects. One shall distinguish between wall-heating and loca-
lized wall-heating. The latter gives rise to wall temperature jump
effect and can destabilize Mack’s second mode (see recent analysis
by Fedorov et al., 2015).

When the flow is subjected to the dual effects of FPG and wall-
heating, a new mode comes to light. A first analytical study was
performed by Tunney et al. (2015) under inviscid equations. The
straight reason of the instability is the development of streamwise
velocity overshoot (U(y)>U∞ near the upper edge of the boundary
layer). Discussion on the overshoot can be found in Tunney et al.
(2015) and the references therein. Under inviscid assumption, the
new mode was shown to have comparable growth rate as the con-
ventional first mode and Mack’s higher mode. Therefore, the new
mode is of primary importance in hypersonic flow transition.

In this paper, we report a viscous stability analysis on this new
mode. In Section 2 the methodology and the base flow are intro-
duced. Modal stability is discussed in Section 3, and the paper is
concluded in Section 4.

2 Methodology and base flow
The stability equations are derived from the Navier-Stokes

equations provided the base flow is obtained in advance. A
frequently-adopted form is written as
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(1)

Here q̃ = (ρ̃, ũ, ṽ, w̃, T̃ )T is the perturbation vector of flow density,
velocity and temperature. The 5× 5 matrices Γ, A, B... are functi-
ons of the base flow and dimensionless parameters Re, Ma, Pr. De-
tailed expressions for these matrices can be found in the authors’
previous articles (Ren & Fu, 2014, 2015). The physical quantities
are nondimensionalized with their corresponding free-stream values
except pressure p∗ by ρ∗∞U∗2∞ . Asterisk denotes dimensional quan-
tities. The orthogonal coordinates x∗, y∗, z∗ describing the distance
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in streamwise, normalwise and spanwise directions are normalised
with the length scale δ ∗ =

√
ν∗∞x∗/U∗∞. As a result, the dimension-

less parameters Re, Ma, Pr are

Re =
ρ∗∞U∗∞δ ∗

µ∗∞
, Ma =

U∗∞√
γR∗airT ∗∞

, Pr =
µ∗∞C∗p

κ∗∞
. (2)

One is able to identify, Re is a measure of streamwise coordinate
when the freestream parameters are fixed. On the other hand, when
Re→ ∞, the equations reduce to inviscid O-S and Squire equations
in compressible form. In the framework of modal stability, equation
(1) is solved as an eigenvalue problem through

q̃(x,y,z, t) = q̂(y)exp(iαx+ iβ z− iωt)+ c.c. (3)

We focus on the spatial problem which is more relevant to practical
boundary layer flows. Therefore, α is the eigenvalue to be numeri-
cally solved. In the above formulation, we have assumed the flow
to be calorically-perfect-gas and Pr is constant. Therefore,

p∗= ρ
∗R∗airT ∗, γ = 1.4, C∗p = const, R∗air = const, Pr = 0.72= const.

(4)
The first coefficient of viscosity µ is given by Sutherland’s law and
the second coefficient follows Stokes’s hypothesis, i.e., λ =−2/3µ .

The similar solution of the boundary layer equations offers a
concise thus normalised base flow. For a better understanding of
the new mode and generation of the full stability diagram, it is em-
ployed in this study. Introducing the Mangler-Levy-Lees transfor-
mation (see detailed introduction in Schlichting & Gersten, 2017;
Cebeci & Smith, 1974; Cebeci, 2002)

dξ = ρeµeue dx

dη =
ρue√

2ξ
dy

 (5)

into the boundary layer equations, yields the transformed equations:

(c f ′′)′+ f f ′′+βp(1+ k)(g− f ′2) = 0

(a1g′+a2 f ′ f ′′)′+ f g′ = 0

}
(6)

where the prime denotes the derivative with respect to η . The coef-
ficients are defined as

c=
µ

T
, a1 =

c
Pr

, a2 =
2k

k+1

(
1− 1

Pr

)
c, k=

(γ−1)
2

Ma2, βp =
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ue

due

dξ
.

(7a− e)
The physical quantities are recovered through

u∗

u∗∞
= f ′,

H∗

H∗∞
= g,

T ∗

T ∗∞
= (1+ k)g− k f ′2. (8a− c).

Here H denotes the total enthalpy. It should be noted that the
temperature-based energy equation is also frequently used. With
the same transformation (5), the temperature-based energy equation
becomes

1
Pr

(cθ
′)′+ f θ

′+(γ−1)Ma2c f ′′2 = 0, (9)

where

T ∗

T ∗∞
= θ . (10)

(6) or (9) can be solved with standard boundary value problem
(BVP) solvers. The boundary conditions (isothermal) are

f (0) = f ′(0) = 0, g(0) = Hw, f ′(∞) = g(∞) = 1 (11a− c)

and

f (0) = f ′(0) = 0, θ(0) = Tw, f ′(∞) = θ(∞) = 1. (12a− c)

When g′(0) = 0 or θ ′(0) = 0 is applied instead of the Dirichlet
condition, the flow is adiabatic.

Figure 1 shows the profiles of streamwise velocity and tem-
perature. As can be observed, perfect matches with Tunney et al.
(2015, with Chapman’s law) and temperature based energy equa-
tion (see also Ricco et al., 2009, with Sutherland’s law) have been
achieved. Along with the increase of the pressure gradient βp, the
laminar boundary layer profile U(y) is essentially modified. The
boundary layer thickness decreases. An inflection point appears al-
ong with the presence of the streamwise velocity overshoot (larger
than the free-stream value).

3 Stability analysis
Three group of cases have been studied to reveal the stability

diagram of the new mode and its relationship to conventional first
and Mack’s second mode. See Table 1 for the prescribed para-
meters. Case 1 serves as a basic case to recover the typical zero-
pressure gradient boundary layer with adiabatic boundary condi-
tion. Wall heating is included in Case 2 and the dual effects of wall
heating and FPG is considered in Case 3. A broad range of para-
meters is specified to show all the possible modal instabilities thus
allowing a complete stability diagram.

Table 1. Parameters of the three cases studied. Mach number
Ma= 4.5, Stagnation temperature T ∗0 = 329K, Spanwise wavenum-
ber 06 β 6 1, angular frequency 06ω 6 1.2 and Reynolds number
100 6 Re 6 2000.

Case Wall heating Pressure gradient

1 H ′w = 0 βp = 0

2 Hw = 1.5 βp = 0

3 Hw = 1.5 βp = 0.4

Figure 2(a) shows the stability diagram of zero-pressure gra-
dient boundary layer subjected to adiabatic boundary conditions
(Case 1). The unstable block (in the Re−β −ω space) of the first
and second modes are enclosed by the corresponding enveloping
surfaces. Apparently, both modes become unstable starting from
certain Re numbers. These numbers, termed critical Reynolds num-
bers, indicate that the perturbations gain exponential eigen-growth
downstream of the leading edge. As can be seen from Figure 2(a),
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Figure 1. Profiles of (a) the streamwise velocity U and (b) tempe-
rature T as functions of the similarity variable η . The Falkner-Skan
pressure gradient parameter βp = 0, 0.1, 0.3, 0.5 and 0.7 respecti-
vely. Ma = 6, Hw = 1.5 and Pr = 0.72.

the unstable regions of the two modes do not intersect with each
other at Ma = 4.5. The angular frequency of the second mode is
above the first mode, therefore possessing a higher frequency.

Several surface cuts are shown with β =
0, 0.04, 0.08, 0.12, 0.16 and 0.20 respectively. These iso-
surfaces show contours of the eigenvalue αi (−αi is the local
growth rate). One can see that the second mode have an obviously
larger growth rate and it reaches maximum growth rate at β = 0.
When β is increased, both the maximum growth rate and the
unstable area get reduced. As a result, it is generally accepted that
the 2-D perturbation (β = 0) is the most dangerous for the second
mode. On the other hand, the optimal spanwise wavenumber for
the first mode is not zero.

When wall-heating is imposed, as shown in Figure 2(b),
Mack’s second mode is significantly stabilized. Both the maximum
growth rate and the unstable area become reduced. On the other
hand, the first mode is enhanced. The maximum growth rate is not
much increased but the unstable region is expanded to a major de-
gree, intruding into Mack’s second mode.

As can be seen in Figure 2(c), with the dual effects of wall-
heating and FPG, the new mode becomes the only unstable mode in
the boundary layer. By comparing with Case 1 and Case 2, the new
mode has a much larger unstable region in terms of β and ω . Inte-
restingly, it reaches maximum growth rate at β = 0 but has smaller
growth rate compared with the conventional modes. Case 2 and 3
are plotted together in Figure 2(d). It is apparent that the new mode Figure 2. Stability diagram of the boundary layer for Case 1 (a);

Case 2 (b); Case 3 (c); Case 2 & 3 (d).
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Figure 3. Growth rate of 2-D perturbations (β = 0) as functions of
pressure gradient βp. (a) Boundary layer with adiabatic condition
(H ′w=0); (b) Boundary layer with wall-heating (Hw=1.5);

covers the frequency band of the Mack’s second mode and extends
to much higher values.

It is remarkable that the new mode becomes the only unstable
modes when dual effects (wall-heating and FPG) are present. This
is interpreted in Figure 3 where the influence of pressure gradient βp
is revealed. Several representative frequencies were chosen to show
the possible unstable modes. The results show that, whether the
wall is heated or adiabatic, it does not change the significant stabili-
zing effect of FPG on the conventional modes. Both the first mode
and Mack’s second mode soon become stable when FPG increases
to βp = 0.1. Mack’s second mode is even more sensitive to this
parameter. This is consistent with previous studies as introduced in
Section 1. On the other hand, the new mode starts growing when
βp reaches a value of about 0.2. Hence, the new mode becomes the
only unstable mode in boundary layer with FPG & wall-heating.

The spectrum of high-speed boundary layers has been shown
(see reviews by Fedorov, 2011; Zhong & Wang, 2012) to help the
understanding of the excitation of the unstable modes. The synchro-
nization between Mode F (stems from the fast acoustic wave) and
Mode S (stems from the slow acoustic wave) gives rise to the gro-
wth of Mack’s second mode. Detailed comments on the synchroni-
zation were made by Federov & Tumin (2011). Figure 4 shows the
discrete spectrum (phase velocity c = ω/αr and imaginary part of
the eigenvalue αi.) for the three cases at fixed physical frequency
F = ω/Re = 2.2×10−4.

Case 1 reproduced the spectrum in conventional adiabatic
boundary layers with zero pressure gradient. At this frequency,
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Figure 4. Spectrum of the 2-D perturbations (β = 0) with fre-
quency F = ω/Re = 2.2× 10−4 for Case 1 (a,b); Case 2 (c,d)
and Case 3 (e,f ). The thick horizontal lines (in a,c,e) show the
phase velocities of the continuous spectrum: fast acoustic wave
(c = 1 + 1/Ma=1.22), voticity/entropy wave (c = 1.0) and slow
acoustic wave (c= 1−1/Ma=0.78). The solid circles show the syn-
chronization regions. The notations F1, F2... represent the multiple
Fast mode excited consecutively.

Mode S played the first mode and Mack’s second mode at diffe-
rent sections of Reynolds numbers. The first mode is stable while
Mack’s second mode enters the growth zone when Mode F and
Mode S have almost identical phase velocities (synchronization).
When the synchronization is finished (at about Re = 1200), all the
discrete modes decay. Case 2 is similar to Case 1 except the first
mode has an unstable section due to wall-heating. The second
mode, on the contrary, is stabilized by manifesting in a reduced
overall growth rate.

The new mode appears in Case 3. One can still identify the
Mode F and Mode S. However, Mode F synchronizes with the fast
acoustic wave at a much larger Reynolds number. Synchronization
between Mode F and Mode S still caused localized peak values of
αi for each other. Apparently, both modes are far from the unstable
half-plane. Interestingly, the spectrum branching occurs indicating
Mack’s second mode has similar dispersion relation in this case.
The new mode seems to stem from the vorticity/entropy wave (c =
1.0) and remains a phase velocity slightly larger than 1.0. At Re =
1826, the new mode becomes unstable and gains maximum growth
rate at Re = 3090.

We pick the parameter of the (quasi-) most amplified new mode
from Case 3 and plot the eigenvector of the new mode in Figure 5.
Reynolds number Re = 2000, ω = 0.6 and β = 0. The base flow is
plotted as a reference. The boundary layer can be qualitatively di-
vided into three regions shown in the figure. Region (1) starts from
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Figure 5. Eigenvector of the new mode at Re = 2000, ω = 0.6 and
β = 0. Absolute values are shown. The temperature and density
perturbations are scaled with a factor of 0.1.

the wall and is replaced by Region (2) where the overshoot U(y)> 1
starts. Region (3) is the inviscid region outside the boundary layer.

The perturbations are mainly distributed in Region (1) and (2)
where the baseflow shear exists. As expected in most hypersonic
cases, temperature perturbation has the maximum amplitude, fol-
lowed by the density components. Both perturbations are largely
distributed in Region (2). The velocity perturbation ũ and ṽ though
have much smaller amplitudes but are critical for the transportation
of momentum and energy of the fluids.

4 Concluding remarks
Inspired by Tunney et al. (2015), the viscous instability of the

high-speed boundary layer with the dual effects of FPG and wall-
heating is studied. From modal stability analysis, the full stability
diagram (in the coordinates of Re−β −ω) is given and compared
with conventional first mode and Mack’s second mode. The new
mode becomes the only unstable modes in such flows where FPG
readily suppressed the conventional modes. The synchronization
between the spectrum found in high-speed flows (Federov & Tu-
min, 2011) remains but is not responsible for the growth of the new
mode.
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