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ABSTRACT

The focus of this contribution is an evaluation against exper-
imental data of three models for the stream-wise normal stress in
zero pressure gradient turbulent boundary layers, henceforth abbre-
viated ZPG TBL'’s : an inner-scaled, mixed-scaled and outer-scaled
model, where the stress is scaled by the square of the friction veloc-
ity, the product of friction and free stream velocities, and the square
of the free stream velocity, respectively. The inner-scaled model of
Monkewitz & Nagib (2015), which implies a decrease of the (neg-
ative) outer logarithmic slope of the stream-wise normal stress with
increasing Reynolds number and is the only model constructed as
a genuine composite asymptotic expansion satisfying the complete
momentum equation close to the wall, is found to provide the clos-
est fit to the experimental data. As an aside, it is shown that these
data do not collapse in the so-called diagnostic plot.

I. INTRODUCTION

The central theme of this paper is the Reynolds number scaling
of the stream-wise normal stress (uu), in particulat of its inner max-
imum, of the height of the outer plateau or outer peak and of the
start of its presumed logarithmic decrease towards the outer bound-
ary layer edge. To unify the discussion, (uu)™ will be specified
throughout this paper in inner units, i.e. normalized by the square
of the friction velocity u2 = (Tyan/p)-

The paper first recalls in section II the connection between the
scaling of the outer plateau or peak, its location and the (outer) log-
arithmic slope of (uu)™, in particular the necessary conditions for
the latter to be independent of Reynolds number. The inner-scaled,
mixed-scaled and outer scaled models considered here are intro-
duced in section III and compared to experimental data in section
IV. In its last sub-section IV.3, the important question is investi-
gated of what Reynolds number is required to reliably determine
the logarithmic slope of (uu)™. Using the same data and the inner-
scaled model, it is demonstrated in the appendix that the “diagnostic
plot” of tashrmrms/U versus U /Us introduced by Alfredsson ez al.
(2011) collapses the data only over a limited low Reynolds num-
ber range. The paper closes with brief conclusions in favor of the
inner-scaled model in section V.

Il. THE CONNECTION BETWEEN LOGARITHMIC
SLOPE AND SCALING OF STREAM-WISE NORMAL
STRESS

According to the current “majority view” (see e.g. Marusic
et al. (2013)), the stream-wise normal stress decays logarithmically
between the outer plateau or outer peak “outp” and a wall-normal
station near the boundary layer edge. The purpose of this section
is to determine the relation between the range of the supposed log-
arithmic decay and the magnitude of the stream-wise normal stress
(uu) at the start of the logarithmic decay.

For the purpose of the following discussion, the scaling
ouw(Rer) of the normal stress is specified explicitly, such that
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Figure 1. Schematic of the logarithmic region of (uu)™, with n =
v/ 8 the outer wall-normal coordinate.

(uu) = oyy{uu)™ = O(1), where Rer is the Reynolds number based
on boundary layer thickness 6 and u;. In the wall-normal direc-
tion, the logarithmic decay region is taken to extend from Mgpiog
to TNendlog» where 1 = (y/5) = (y+/ReT) with y+ = (yu‘t)/v the
standard inner-scaled coordinate. The conversion from 7 to the
outer Rotta-Clauser coordinate ¥ = (yuz)/(Us06:) = 1(Re;/Reg. )
involves the conversion from Re; to Res , the Reynolds number
based on displacement thickness 8, and free stream velocity Us.
As the definition of the boundary layer thickness & is somewhat ar-
bitrary and varies from author to author, the conversion adopted in
this paper will be specified in section IV.

The logarithmic decay region of (uu)™ is shown schemati-
cally in figure 1. To obtain the scaling of the logarithmic slope,
the starting point of the logarithmic decay is taken to scale as
Gstartlog(ReS*)nstanlog = ﬁ(l)’ while Nendlog ~ 1. Together with
(uue) ™ (Mstartiog) > (1) (Mendiog)» One obtains for the logarithmic
slope LS of (uu)™

LS:ﬁ( (1)

Ouu In( Ostartlog )

Therefore, for any power-law scaling Ogriog = Re?, a con-
stant logarithmic slope of (uu)™ is only possible for Gy =
O(InRe;) ! ~ (UH)7!, ie. for a “mixed” scaling of (uu)ourp.
Specifically, to obtain a universal (Reynolds independent) loga-
rithmic decay rate (the “Townsend-Perry constant”) beyond 1 ~

3Re;l/2, as suggested by Marusic et al. (2013), (uu):fmp would
have to be &(InRe;) ~ O(U). Since Monkewitz & Nagib (2015)
have demonstrated that near the wall the inner scaling, i.e. {(uu)™ =
O(1), is the only one compatible with the momentum equation, this
would imply a boost of (uu)™ by a factor of order &(InRe) be-
tween the near-wall region and the start of the logarithmic decay.

To date, no mechanism to achieve this has been proposed.

lll. MODELS OF NORMAL STRESS, REPRESENTA-
TIVE OF THE THREE MAIN SCALING OPTIONS

In the following, we consider three models representative of
the three main options for scaling streamwise normal stress:
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Figure 2. Comparison of the “attached eddy” models with loga-
rithmic slopes of -1.03 (short dashes) and -1.26 (long dashes) for
the Reynolds numbers of table 1

- Inner scaling - (uu) = O(u2), ie. ()™ = O(1)
- Mixed scaling - (uu) = O(Usoltz), i.€. (uu)™
- Outer scaling - (uu) = O(U2), ie. (uu)t = O(UL)?

The inner-scaled model considered here has been proposed
by Monkewitz & Nagib (2015) and is the only one of the three
models constructed in terms of matched inner and outer asymptotic
expansions. They showed by a detailed analysis of the complete
Taylor-expanded momentum equations that close to the wall (up to
y* of around 10) (uu)™ must be &(1). Keeping the inner scaling
throughout the boundary layer, the observed increase of the inner
peak at y© ~ 15 is modelled as (uu)fpeak =22 —340/U.t, in excel-
lent agreement with all available data. The outer expansion features
a logarithmic decay, starting at y* = &(U) with a Reynolds num-
ber dependent slope of —52/U.t. The inner and outer expansions
are asymptotically matched through an “outer plateau” of height
22 —470/U, centered at y© = 0(U)"/2.

The mixed model has been inspired by the attached eddy hy-
pothesis of Townsend (1956, 1972) and first developed for the wake
part by Marusic & Perry (1995) and Marusic et al. (1997). The
main characteristic of this model, which follows from the attached
eddy hypothesis, is a Reynolds-independent logarithmic slope of
{(uu)™ in the outer part of the boundary layer. As a consequence,
(uu) ™ (NMougp in figure 1 is of order Uz} as discussed in section IL
Marusic & Kunkel (2003) then completed the model by patching a
near-wall fit to the outer part which had a logarithmic slope of -1.03.
Finally, Marusic et al. (2013) changed the logarithmic slope to -1.26
to adapt the model to more recent data. The modified patch to the
near-wall fit of Marusic & Kunkel (2003) was provided by Marusic
(2016). The models with the original “Townsend-Perry constant” of
-1.03 and the modified value of -1.26 are shown in figure 2 for the
Reynolds numbers of table 1.

Finally, the outer model of Duncan (2011) is considered. Its
main difference to the inner model of Monkewitz & Nagib (2015)
and the attached eddy model is the lack of a logarithmic decay in
the outer part of the boundary layer. Instead, this fit develops an
extended plateau in the wake region at a level of 0.007 (U})? before
a sharp drop to zero at the edge of the boundary layer.

All three models are compared in figure 3 for the Reynolds
numbers of table 1.

IV. COMPARISON BETWEEN MODELS AND DATA
IV.1 Choice of experimental data

To ensure consistency, all the Reynolds numbers for the exper-
iments used in this paper and listed in table 1 are derived from U :
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Figure 3. Comparison between the inner model of Monkewitz &
Nagib (2015) (solid lines), the attached eddy model with a logarith-
mic slope of -1.26 (dashed lines) and the outer model of Duncan
(2011) (dash-dotted lines) for the Reynolds numbers of table 1

First Re, is obtained from the relation (Monkewitz (2017))

Ut n(Res ) +3.26 ®)

T 0.384

where the additive constant has been slightly reduced relative to
Monkewitz et al. (2007). Then, Re; based on & gg5 is determined
from the graph of 1 995 versus Reg, (figure 2 of Monkewitz (2017)),
which is obtained from a new composite fit of U™ in (Monkewitz
(2017)). Note that 1 995 is in general a decreasing function of Reg,
which is sensitive to the outer fit of U (7). For the fit of Monkewitz
(2017), n.995 is equal to 0.245 at Res = 10* and decreases by 5%
to Res = 108,

Table 1. Data sources and color scheme for all figures.
T : case #7 at x = 10.56 m with U, = 13.36 m/s;
% :case#11 at x = 10.56 m with Us, = 20.18 m/s.

Res, Re; symbol source
7600 1880 M (red) Bruns (1998)
16500 4070 (yellow) Kulandaivelu (2011)
27200 6690 (green) Marusic et al. (2013)
61500 15000 e (blue) Kulandaivelu (2011)
146000 35600 M (purple) Winkel ez al. (2012)"
233000 56600 A (red) Winkel et al. (2012)*
105 241000 — (pink) fits only
108 232107 (green) fits only

It is important to note here that the original LCC data are used,

as provided in Winkel et al. (2012), while in Marusic et al. (2013)
{(uu)™ and yT have been rescaled with a u; determined by fitting a
composite expansion to the corresponding U+. However, all the
LCC mean velocity profiles systematically have an additive log-
law constant of about 5.2 instead of the standard value around 4.2
(4.22 in the present paper), as seen in figure 4a for one of the pro-
files. Hence, least-squares fitting a “good” composite expansion to
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Figure 4. Comparison of the original LCC data for Reg,
2.3310° (A, see table 1) with the rescaled data (A) of fig. 1in
Marusic et al. (2013). a) —, composite fit of Monkewitz (2017) for
Res, =2.33 10%; —, composite fit for Res = 1.52 10%; — (grey),
black triangles back-transformed by a 3% reduction of u;. b) Anal-
ogous to a) for (uu)*, with the outer fit of Monkewitz & Nagib
(2015); - - -, logarithmic slope of -1.26

the flawed original LCC profile in figure 4a produces an increase
of ur by approximately 3% which moves the mean velocity pro-
file down and to the right and produces the U™ (y™) in figure 1 of
Marusic et al. (2013). However, it is obvious from figure 4a that
this approach, which “fixes” the log-law, completely botches the
approach to the free stream: while the increase of u; reduces UJ
to 34.3, corresponding to Res = 1.52 10% (equ. 2), the free stream
is only reached at y* ~ 810*, which is twice the value at which
well-behaved data (and the composite fit) reach the free stream at
this Reg, (see figure 4a). The conclusion is that the LCC data are
NOT afflicted by a systematic error of Ty, but the reason for the
anomaly of U™ can unfortunately not be reconstructed. Therefore,
we will use the original LCC data for (uu)™ without the rescaling
of Marusic et al. (2013). As seen in 4b, this issue is crucial for the
determination of logarithmic slopes, which can only be determined
with confidence from data beyond about Regs 2 10, as discussed in
section IV.3 (see figure 4b for the effect of the rescaling by Marusic
et al. (2013) on the logarithmic slope).

IV.2 Experimental data versus the models of Section III

This section is devoted to the comparison between the experi-
mental data of table 1 and the three models introduced in section III:
the inner-scaled model of Monkewitz & Nagib (2015) in figure 5,
the mixed-scaled attached eddy model of Marusic & Kunkel (2003)
with the “Townsend-Perry constant” modified to -1.26 in figure 6,
and the outer-scaled model of Duncan (2011) in figure 7.

It is quite obvious from these three figures, that the inner-scaled
model of Monkewitz & Nagib (2015) provides the best fit to the
data considered here, but, in view of the considerable data uncer-
tainty especially inside of the outer plateau or peak, the attached
eddy model cannot be discarded on the basis of this comparison.
The reader is nevertheless reminded, that the model of Monkewitz
& Nagib (2015) is the only one constructed as a true composite ex-
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Figure 5. Comparison of (uu)* for the first 6 Reynolds num-
bers of table 1 with the inner-scaled model of Monkewitz & Nagib
(2015).

(uuy*

10°

Figure 6. Comparison of (uu)™ for the first 6 Reynolds numbers
of table 1 with the mixed-scaled model of Marusic & Kunkel (2003)
with the modified “Townsend-Perry constant” of -1.26 proposed in
Marusic et al. (2013).

(uu)*

Figure 7. Comparison of {uu)™ for the first 6 Reynolds numbers
of table 1 with the outer-scaled model of Duncan (2011).

pansion and satisfies the full momentum equation close to the wall.
The outer-scaled model of Duncan (2011), on the other hand, is
seen in figure 7 to completely miss the decay of (uu)™ towards the
boundary layer edge, except at the lowest Reynolds numbers.
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Figure 8. Indicator function E,,, (equ. 3) derived from the model
of Monkewitz & Nagib (2015) for 27.2 103 < Res < 10° of table
1. —, complete E,,; - - -, &, without the final decay towards the
boundary layer edge; symbols, E,, derived from corresponding ex-
perimental data. Horizontal black line, &, = —1.26. Color scheme
and symbols as in table 1.

IV.3 What Reynolds number is required to reliably determine
logarithmic slopes ?

To put the debate about the logarithmic slope of {uu)™ in the
proper perspective, it is helpful to derive the indicator function

d{uu)™
a(iny™)

(]

3

uu

from the experimental data of table 1. This turns out to be consid-
erably more difficult than for the mean velocity, where the logarith-
mic derivative is commonly used to determine the Kdrmén constant,
since data for (uu)™ are much noisier than for U". The experi-
mental E,, have been determined with a 5-point quadratic least-
squares fit for Reg > 16.5 103 and are shown in figure 8, together
with the corresponding indicator functions derived from the model
of Monkewitz & Nagib (2015).

Despite the considerable scatter, it is obvious from this figure,
that up to Res, ~ 10 it is not possible to determine the underlying
logarithmic slope (the horizontal dotted lines in figure 8) by drawing
a tangent on the graph of (uu)™ versus In(y™). This is because, to
use asymptotic matching terminology, the inner and outer parts are
not yet sufficiently separated.

Above Res =~ 103, the experimental points of —&,, in figure
8 are seen to develop, despite the large scatter, a turning point and
eventually a plateau at a level which decreases for increasing Reg ,
but stays above 1.26, the value postulated by the attached eddy
model for all Reg, . This clearly supports the inner-scaled model of
Monkewitz & Nagib (2015). The parameters of its outer fit, how-
ever, may well evolve as more high quality data for {(uu)™ in ZPG
TBL'’s at Reynolds numbers Regs beyond 10° become available.

V. CONCLUSIONS IN FAVOR OF INNER-SCALED
NORMAL STRESS

The logarithmic slope of (uu)™ in the outer part of ZPG TBL’s
is summarized in figure 9 as a function of Res_for the mixed-scaled
attached eddy model of Marusic & Kunkel (2003) and the inner-
scaled model of Monkewitz & Nagib (2015). As argued in section
IV.3, below Res of 10 this slope cannot be determined directly
from the data, but the analysis of the indicator function shows that
the turning point of —Z,,,, which eventually develops into the log-
region, is a decreasing function of Regs,_ as inferred by Monkewitz
& Nagib (2015). The figure 9 also illustrates the difficulty of identi-
fying the dependence of a logarithmic slope on Reg, from data over
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Figure 9. — , underlying logarithmic slope of the outer part of

(uu)™ versus Reg_ in the ZPG TBL, according to the inner-scaled
model of Monkewitz & Nagib (2015); — , log slope for the pipe
versus Re™ as given in Appendix A of Monkewitz & Nagib (2015).
—, -1.26 slope of the attached eddy model. Thin vertical
of experimental Reg in table 1. Red-shaded area : range of Res,

, range

for which (uu)™ starts to have a part with approximately constant
logarithmic slope.

a very narrow range of In(Reg, ) and the urgent need for high qual-
ity data well beyond Reg of 10%. It is nevertheless noted that the
log-slope of the model by Monkewitz & Nagib (2015) crosses -1.26
atRes ~5 10° which is close to the estimated Reynolds number of
the SLTEST atmospheric boundary layer data (see fig. 1 of Marusic
et al. (2013) and references therein).

Another example, not directly related to the question of the
logarithmic slope of (uu)™, where an accidental data collapse over
the limited range of available experimental Reynolds numbers, is
the so-called diagnostic plot, proposed by Alfredsson et al. (2011)
and briefly discussed in the appendix.

In conclusion, the present paper has once again demonstrated
the importance of any model evolving slowly with In(Res, ) to in-
corporate the proper limiting behavior as Res — oo.
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APPENDIX: THE “DIAGNOSTIC PLOT”

The so-called diagnostic plot has been proposed by Alfreds-
son et al. (2011) who noticed the collapse of experimental data in
the outer part of ZPG TBL’s onto a straight line when plotted as
urms /U versus U /U.. However, the Reynolds number range was
limited and with the availability of the LCC data and the model
of Monkewitz & Nagib (2015) for (uu)™, it is worthwhile to re-
examine this plot. There is however the problem with the mean
velocity in the LCC experiment, discussed in section IV.1. There-
fore, for the two LCC Reynolds numbers of table 1, only the ex-
perimental (uu)* has been retained, while the composite expan-
sion of Monkewitz (2017) has been used for the mean velocity U™.
The diagnostic plot for the Reynolds numbers of table 1 is shown
as figure 10 which clearly shows that the supposed collapse onto
trms /U =0.29—0.26 (U /U ) is limited to a narrow (low) Reynolds
number range.

The additional dotted curves in the figure represent the analo-
gous cross-plot with um replaced by the outer asymptotic (pure)
logarithmic decay of the Monkewitz & Nagib (2015) model, and U
replaced by the mean-flow log-law. As best seen in figure 10b, for
Res 2 10° the graphs with U and ums replaced by their respec-
tive log-laws are close to the graphs with the complete composite
expansions in the region where the correlation of Alfredsson et al.
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Figure 10. Diagnostic plot according to Alfredsson et al. (2011).
(a) Data symbols as in table 1; —, corresponding ratios of com-
posite fits for all the data plus Res, = 10° (pink) and 10° (green);
- -, corresponding ratios of logarithmic parts; — - —, correlation
ttrms /U = 0.29 — 0.26 (U /Us). (b) Same data minus correlation.

(2011) is supposed to hold. Note that the restriction on Reg, does
not apply with the attached eddy model for (uu)™ as, according
to Marusic et al. (2013), the log regions for U' and (uu)™ coin-
cide. Hence, the equation u, /U = 0.29 —0.26 (U /U with
Ut ~ (1/x)In(y") + B and g ~ [co — 1 In(y+)]V/2 is clearly un-
balanced if the normal stress follows any log-law.
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