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Effect of stratification on the turbulent wake behind a sphere at Re = 10,000
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ABSTRACT
Large eddy simulation of flow past a sphere in a density-

stratified fluid is performed at a Reynolds number of Re =
U∞D/ν = 10,000 and Fr = U∞/ND = ∞, 3, and 1 where Fr = ∞

refers to the unstratified case. Here, U∞, D, and N are the free-
stream velocity, sphere diameter, and constant background buoy-
ancy frequency, respectively. The choice of Fr = O(1) allows in-
vestigation of the turbulent wake under conditions where the buoy-
ancy time scale, 1/N, is comparable to the mean flow time scale,
D/U∞. Visualizations in the form of Q-criterion and azimuthal vor-
ticity show that stratification introduces qualitative changes in the
near wake structure as well as the helical mode instability. The cen-
terline defect velocity, U0, in the unstratified wake decays according
to the power law, U0 ∝ x−m, with m = 1 instead of the classical value
of m = 2/3. In the stratified wakes, U0 exhibits an “oscillatory mod-
ulation” owing to the lee-wave pattern created by the sphere. As a
result, U0 increases in the region πFr 6 x/D 6 2πFr instead of the
usual decrease. Further downstream, there is an overall decrease of
U0 but the exponent m in the power law, U0 ∝ x−m, is reduced to
m = 0.4. The turbulent kinetic energy (t.k.e.) budget is quantified
to assess the influence of stratification. The relative roles of advec-
tion, production, dissipation, transport and buoyancy flux are found
to be altered over the entire wake at Fr = 1 and in the intermediate
and far wake at Fr = 3.

INTRODUCTION
Turbulent wakes under stratification are ubiquitous, e.g. in

flows past marine swimmers, underwater submersibles, underwa-
ter topography, islands and mountains. In the early years, stratified
wakes were studied primarily using experimental methods. Early
experiments, as reviewed in Lin & Pao (1979), showed that stratifi-
cation suppresses vertical motion, promotes downstream horizontal
coherent eddies, and enables propagation of internal gravity waves
into the far field. With better experimental instruments and ad-
vances in numerical simulation, more accurate qualitative and quan-
titative results have been obtained. Chomaz et al. (1993) experi-
mentally showed that stratified wakes can be divided into four dif-
ferent regimes based on Fr = U/ND. For Fr < 0.4, the wake corre-
sponds to triple-layer flow with two lee waves surrounding a layer
of two-dimensional motion. For Fr between 0.4 and 0.75, the satu-
rated lee wave suppresses the separation region or splits it into two.
When Fr is between 0.75 and 2, the buoyancy effect on the near
wake progressively decreases in importance and, by Fr > 2.25, the
near wake is similar to the homogeneous case. A stratified wake
at high Fr (Fr > O(1)) exhibits three distinct regions. The first re-
gion is the near wake (NW) where the wake spreads uniformly in
all directions and turbulence behaves as it does in a homogeneous
fluid. It is followed by a second non-equilibrium (NEQ) regime
identified by Spedding (1997) where there is an onset of buoyancy
effects including conversion of stored potential energy to kinetic en-
ergy and anisotropy between horizontal and vertical motions. The

third region (Q2D) is characterized by the existence of vertically
suppressed two-dimensional eddies, so called “pancake vortices”.

Recently Pal et al. (2016) and Pal et al. (2017) performed DNS
of stratified flow past a sphere at Re = 3700 over a wide range of
stratifications that encompass the Fr < O(1) regime, the Fr = O(1)
regime and the lower boundary of the Fr > O(1) regime. Unlike
previous DNS/LES of stratified wakes that used a temporal flow
model (Brucker & Sarkar (2010); Diamessis et al. (2011)), the body
was included in these simulations. Though computationally expen-
sive owing to resolution of the boundary layer, the simulation led to
new results regarding the near and intermediate wake. It was found
that the body-generated lee waves cause oscillatory modulation of
the mean defect velocity. Also, the flow enters a new regime of hor-
izontal vortex shedding and turbulence when Fr smaller than about
0.25.

The objective of the present paper is to examine stratified and
unstratified flow past a sphere at a higher Re = 104 and contrast the
results with our knowledge of the Re = 3700 wake. We address
the following questions. Do decay rates of centerline defect veloc-
ity change at higher Re? Do oscillatory modulations persist at the
higher Re? What qualitative and quantitative changes occur in the
turbulent kinetic energy budget?

EQUATIONS
A sphere of diameter D is immersed in a stream with velocity

U . The background is density-stratified with a constant vertical den-
sity gradient, dρb/dx3, and buoyancy frequency N that is defined
by N2 = −(g/ρo)dρb/dx3 with ρ0 a reference density that is rep-
resentative of the background. The filtered Navier-Stokes equations
under the Boussinesq approximation for density effects are solved
along with an advection-diffusion equation for the filtered density.
A dynamic eddy viscosity model is utilized. The following system
of non-dimensional governing equations is numerically solved.

Continuity:

∂ui

∂xi
= 0, (1)

Momentum:

∂ui

∂ t
+u j

∂ui

∂x j
=− ∂ p
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∂
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In Eq. (2), ρd is the deviation of the density from the background
density, ρb(x3). Here, ν is the constant kinematic viscosity and κ is
the constant diffusivity of density while νsgs and κsgs are the subgrid
transport coefficients introduced by the LES model. The fluid has
molecular Prandtl number, Pr = ν/κ = 1, and the subgrid Prsgs =
νsgs/κsgs is assumed to be unity leading to the simplified form of
the RHS of Eq. (3). The Froude number, Fr = U/ND, and the
Reynolds number, Re = UD/ν , are the primary non-dimensional
parameters. In the following discussion, all variables discussed are
non-dimensional unless otherwise noted. Subgrid viscosity, νsgs, is
obtained using the dynamic eddy viscosity model of Germano et al.
(1991). The coefficient C, as in νsgs = C∆

2|S|, is dynamically com-
puted using a method of Lilly (1992). C is dynamically averaged
along flow trajectories with an exponential weighting function cho-
sen to give more weight to recent times in flow history.

NUMERICAL METHOD
Governing equations (1)–(3) are solved numerically in a cylin-

drical coordinate system on a staggered grid. The sphere is repre-
sented by the immersed boundary method of Balaras (2004); Yang
& Balaras (2006). The equations are marched using a combination
of explicit and implicit schemes. Implicit marching by the second
order Crank-Nicolson (CN) scheme is performed for the terms in
the azimuthal direction to alleviate stiffness of the discretized sys-
tem. The remaining terms are marched explicitly using a third-order
Runge-Kutta (RK3) scheme. A periodic boundary condition in the
azimuthal direction transforms the discretized Poisson equation into
inversion of a pentadiagonal matrix. The pentadiagonal matrix sys-
tem is solved using a direct solver, Rossi & Toivanen (1999). Inflow
and convective outflow boundary conditions are applied at the inlet
and outlet of the domain. In order to control spurious reflections
from internal waves and other disturbances propagating out of the
domain, sponge regions are employed near the free stream and inlet
boundaries where the following relaxation terms are added to the
governing equations:

−φ(xi)[ui(xi, t)−Ui], −φ(xi)[ρ(xi, t)−ρ∞(x3)] . (4)

The sponge layer takes the form of a Rayleigh damping function
which is designed in such a way so as to gradually relax the veloci-
ties and density to their respective values at the boundaries. Here Ui
is the freestream velocity and ρ∞(x3) is the density of the stratified
background. This is accomplished by adding the explicit damping
terms of equation (4) to the right hand side of equation (2) and (3).
The variable φ(xi) is constructed such that it increases quadratically
from φ = 0 to φ = 1 over a sponge region of thickness 10 grid points
at the inflow and at the freestream boundaries.

PARAMETERS
All simulations are performed with Re = UD/ν = 104. Three

cases are investigated with Fr = ∞ (unstratified), Fr = 3, and Fr =
1. The choice of Re = 104 allows for validation against the LES
of Rodrı́guez et al. (2013), Yun et al. (2006), and Constantinescu
& Squires (2004). Domain sizes in the upstream, downstream, and
radial directions are L−x /D = 40.16, L+

x /D = 80.62, and Lr/D =
59.84, respectively. The sphere center is at (x/D,r/D) = (0,0).
In comparison to the unstratified flow past a sphere of Rodrı́guez
et al. (2013), the domain sizes in the radial and upstream directions
are enlarged to allow free propagation of internal gravity waves in-
duced by stratification. While this is not necessary for the unstrati-
fied case, the same domain size is kept for consistency. The number
of grid points in the streamwise, radial, and azimuthal directions
are Nx = 6144, Nr = 918, and Nθ = 128 giving a total number of

Figure 1. Temporal-azimuthal average of pressure coefficient and
shear stress on the sphere.

grid points of approximately 720 million. Grid stretching is used in
the radial and streamwise directions to concentrate points near the
sphere surface in order to resolve the laminar boundary layer. To
compute statistics, temporal averaging of data is performed over
100 non-dimensionalized time units or approximately one flow-
through time unit after statistical steady-state. Each simulation uses
512 processors with approximately 1700 hours of wall clock time.
The computations utilize a Cray XC40 system with Intel Xeon E5-
2698v3 (Haswell-EP) processors clocked at 2.3 GHz.

VALIDATIONS
Validation of the unstratified case is performed by examination

of the distributions of mean pressure coefficient and mean skin fric-
tion coefficient on the body, mean separation angle, drag coefficient
and shedding frequency. Computation of the mean is done by aver-
aging both in time and in the azimuthal direction. These results are
compared with previous results (Rodrı́guez et al. (2013) and Con-
stantinescu & Squires (2004) ). Figure 1 shows that pressure and
skin friction coefficients are well captured in our simulation. The
variable φ in the figure denotes the angle from the forward stagna-
tion point of the sphere, φ = 0. Mean separation angle, φs, is deter-
mined by the position, φ , where mean C f = 0. The minimum value
of Cp, located at φ = 72o, marks the onset of an adverse pressure
gradient. The rise in Cp beyond φ = 72o indicative of this adverse
gradient contributes to a continuous decrease in C f until the flow
detaches from the surface at separation angle of φs = 88.1o.

VISUALIZATIONS
Three-dimensional visualization of instantaneous vortical

structures in the wake is done using the Q-criterion of Hunt et al.
(1988), Q = 0.5(|ΩΩΩ|2−|S|2) where Ωi j = 0.5

(
∂ui/∂x j−∂u j/∂xi

)
and Si j = 0.5

(
∂ui/∂x j +∂u j/∂xi

)
. Figure 2 shows isosurface of
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Studies St φs Cd Cpb

Present LES 0.199 88.1 0.407 -0.251

Rodrı́guez et al. (2013) 0.195 84.7 0.402 -0.272

Yun et al. (2006) 0.17 90 0.393 -0.274

Constantinescu & Squires (2004) 0.195 84 0.393

Table 1. Comparision of near field statistics.

Q = 2, 1, and 0.5 for Fr = ∞, 3, and 1, respectively. The reduc-
tion of isosurface Q-level with increasing Fr is required to enable
sufficient downstream extent of the wake-structure visualization.
Regions with intensified fluid element rotation are signified by a
large positive value of Q where the rate of rotation tensor, Ωi j, ex-
ceeds the rate of strain tensor, Si j. For the unstratified case in the
range, 0.5 6 x/D 6 1, axisymmetric vortex rings are shed from the
sphere. Helical orientation of the unstratified wake previously ob-
served by Yun et al. (2006) is apparent in Figure 2 (top). Visu-
alization of the isosurfaces at different times confirms that helical
structures do not rotate around the streamwise axis as they travel
downstream but rather simply translate downstream as stated in Yun
et al. (2006). At Fr = 3 and especially Fr = 1, the vortex rings are
distorted into ellipsoids with the major axis in the spanwise, y, di-
rection. The suppression of vertical motion is, thus, immediate for
Fr = O(1) wakes and influences how the incoming freestream trav-
els around the sphere. In their results for stratified flow past a sphere
at (Re,Fr) = (3700,0.5), Chongsiripinyo et al. (2017) visualized
blocking in front of a sphere, i.e there is insufficient kinetic energy
to vertically displace incoming fluid over the poles of the sphere.
The incoming fluid is, thus, forced to travel horizontally around the
sphere when Fr < O(1).

Besides the helical orientation in the unstratified case, a wavy
orientation is present at Fr = 3 but only in the horizontal plane while
this feature disappears for Fr = 1. The number density of vortical
structures in all cases decrease downstream. Chongsiripinyo et al.
(2017) investigated dynamics of vortical structures by means of the
enstrophy budget. Their results show that stretching/tilting of vor-
ticity fluctuation by fluctuating strain, ω ′i ω

′
js
′
i j, is primarily respon-

sible for the high density of vortical structures in a small region
behind the sphere 1.5 < x/D < 5.

Figure 3 and 4 show contours of instantaneous spanwise vor-
ticity in the vertical center plane (y = 0) for −1 < x/D < 10 and
10 < x/D < 40. For the unstratified case, given that the present
Re = 104 is much smaller than the critical Reynolds number, Re ∼
3×105, the entire boundary layer remains laminar from the forward
stagnation point until separation. The separated shear layer breaks
down into small scale motions via Kelvin-Helmholtz (KH) instabil-
ities at the separated shear layer for both Fr = ∞ and 3. At Fr = 1,
the separated shear layers initially conform with lee waves that have
higher amplitude than those at Fr = 3; consequently, the shear lay-
ers bend toward the centerline. The location where the shear layers
plunge at the centerline is also where production of t.k.e achieves
its maximum. The t.k.e. budget is explained in a subsequent sec-
tion. Figure 4 shows not only the apparent vertical suppression but
also the gradual disappearance of small-scale eddies as stratification
increases. Internal gravity waves emitted from the wakes are also
detected in both stratified cases.

DEFECT VELOCITY
Figure 5 shows the temporal mean streamwise defect veloc-

ity at the centerline. There is an initial rise of defect velocity
for all cases close to the sphere in the recirculation zone. For
the unstratified case, after the peak, the defect velocity monoton-
ically decreases and approaches an approximate constant decay

Figure 2. Isosurface of Q for Fr = ∞ (top, Q=2), Fr = 3 (middle,
Q=1), and Fr = 1 (bottom, Q=0.5).

Figure 3. Spanwise vorticity contour in the near wake (−1 <

x/D < 10) on a vertical plane for Fr = ∞ (top), Fr = 3 (middle),
and Fr = 1 (bottom).

rate of (x/D)−1. This (x/D)−1 power law is also observed in an
unstratified flow past a sphere at lower Re = 3700 in Pal et al.
(2017). The equilibrium similarity analysis of axisymmetric wakes
from George (1989) has shown that the (x/D)−1 decay rate of
defect velocity can be derived from the low Re dissipation scal-
ing, D0 ∼ νu2

0/δ 2, where u0 and δ are the characteristic velocity
and length scale, respectively. However, this dissipation scaling
is not valid in high-Re flow with fully developed turbulence. Re-
cently, Nedić et al. (2013) introduced a modified dissipation scaling,
D0∼ (U∞l/ν)m(u0δ/ν)−nu3

0/δ where l is the size of the wake gen-
erator. By setting m = n = 1, they obtain U0 ∼ (x/D)−1 which, in
contrast to George (1989), is independent of global Reynolds num-
ber ReG = U∞l/ν .

Centerline defect velocities in stratified cases behave differ-
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Figure 4. Spanwise vorticity contour in the intermediate (10 <

x/D < 40) for Fr = ∞ (top), Fr = 3 (middle), and Fr = 1 (bottom).
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Figure 5. Centerline mean streamwise defect velocity.

ently from their unstratified counterpart. Distributions of the defect
velocities over the streamwise centerline for both stratified cases
contain information imposed by the body and the buoyancy fre-
quency. Both velocities reach their first minimum at half of their
buoyancy period, x/D = πFr, away from the sphere center. Down-
stream of the first minimum, the defect velocity, U0, increases and
reaches a peak at one full buoyancy period, x/D = 2πFr. Bonnier
& Eiff (2002) used hot-film measurement and identified a region
known as “accelerated collapse” which is characterized by an in-
crease in defect velocity until achieving a so-called transition re-
gion where the defect velocity starts to decrease again. The “ac-
celerated collapse” is better termed “oscillatory modulation” and
the initial increase of U0 occurs in the region πFr 6 x/D 6 2πFr.
In fact, the defect velocities in both stratified cases continue to al-
ternately increase and decrease further downstream in response to
the steady lee-wave pattern created by the sphere. These oscilla-
tory modulations especially those downstream are also visible for
lower Re = 3700 as in Pal et al. (2017). Beyond x/D = 2πFr,
the defect velocities decay with an overall trend U0 ∝ x−m where
m ' 0.4. Bonnier & Eiff (2002) report m = 0.38 in their strat-
ified flow past a sphere experiments with (Fr = U/ND,Re) =
(1.5,3400);(3,6900);(5,11500). The fact that the decay rate of
defect velocity in the stratified wakes is smaller than that of the un-
stratified wake implies that stratified wakes live longer in the mean.

TURBULENT KINETIC ENERGY
The evolution of turbulent kinetic energy is given below. This

t.k.e. budget details the energy dynamics from the fluctuating flow
components. It is used to quantify and analyze the relative roles

of advection, production, dissipation, transport, and buoyancy flux.
The t.k.e. = 〈u′iu′i〉/2 is denoted as K from here on.

∂K
∂ t

= A+P+ ε +T +B (5)

A and P are advection and production terms defined as,

A =−〈u j〉
∂K
∂x j

, P =−〈u′iu′j〉
∂ 〈ui〉
∂x j

(6)

ε , the turbulent dissipation rate and B, the buoyancy flux, are
defined as follows.

ε =− 1
Re

〈
(1+

νsgs

ν
)

∂u′i
∂x j

∂u′i
∂x j

〉
, B =− 1

Fr2 〈ρ
′
du′z〉 (7)

T is the transport of K defined as,

T =− 1
2

∂

∂xi
〈u′iu′ju′j〉−

∂ 〈p′u′i〉
∂xi

+
1

2Re

〈
∂

∂x j

(
(1+

νsgs

ν
)

∂ (u′iu
′
i)

∂x j

)〉
+

1
Re

〈
u′i

∂u′j
∂xi

∂ (νsgs/ν)
∂x j

〉
(8)

The cross-sectional area integrated terms in the turbulent ki-
netic energy budget are shown in Figure 7. For simplification,
we divide the streamwise domain into 3 regions, 0.7 < x/D 6 10,
10 < x/D 6 40, and 40 < x/D 6 70 referred to as near, interme-
diate, and far wake, respectively. Note that this nomenclature is
consistent with unstratified-wake literature and does not correspond
to regimes based on buoyancy frequency.

The near-wake evolution of t.k.e. (left column of Figure 7) re-
veals that the generation, destruction, and transport of t.k.e. are rel-
atively large close to the sphere, 0.7 6 x/D 6 5. Both production
and dissipation reach their peaks at approximately the same location
of x/D' 1.5. Integrated advection is initially negative in the vicin-
ity of the recirculation region and, further downstream, is positive
acting as a local source. The transport term, unlike in simulations of
stratified flow past a sphere at lower Re = 3700 by Pal et al. (2017),
is no longer negligible for the entire downstream domain regardless
of Fr. Chomaz et al. (1993) points out that for Fr > 2.25, the near-
wake is similar to the homogeneous case. Consistent with Chomaz
et al. (1993), quantitative changes relative to the unstratified coun-
terpart are largely insignificant in the Fr = 3 near-wake budget.

The near-wake balance of t.k.e. is significantly altered at Fr =
1. The peak production is approximately 50% larger but large P
spans a shorter streamwise distance so that the t.k.e. shown in Fig-
ure 6 is smaller than in the unstratified case. The dissipation is
significantly reduced so that at the point of maximum production,
P/ε ' 6 compared to the unstratified-wake value of 2. There is
a significant increase in advection. The maxima of production and
advection occur at approximately the same location where the upper
and lower separated shear layers plunge toward the centerline as ob-
served in Figure 3. While the buoyancy term is negligible in the near
wake of the Fr = 3 case, it is significant in the Fr = 1 case. B has
an oscillatory signature that persists for the entire downstream do-
main. Note that since lee waves are introduced by a wake generator,
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Figure 6. Area integrated turbulent kinetic energy.

a simulation using a temporal flow model, as in Brucker & Sarkar
(2010), is unable to capture these oscillatory modulations in U0, P
and B. Buoyancy flux, B, as well as turbulent production, P, cross
zero at x/D = π , the same location where the mean streamwise cen-
terline defect velocity reaches its first local minimum. Thereafter,
over the entire downstream region, both B and P show oscillations
with wavelength of 2πFr. At Fr = 3, B and P also cross zero but
in the intermediate wake and also exhibit oscillatory behavior. It
appears that, in Fr = O(1) wakes, the turbulent production crosses
zero at x/D ≈ πFr and, thereafter, both P and B exhibit an oscilla-
tory modulation with spatial period of 2πFr.

The middle column of Figure 7 depicts the intermediate-wake
region. In the unstratified case, production becomes small relative
to the other terms and the flow evolves as freely decaying turbu-
lence. Although shear production is also small in the stratified
wakes, there are clear differences in the behavior of the different
terms in the t.k.e. balance. At Fr = 3, advection decreases by an
approximate factor of two while the transport term becomes smaller
by an even larger proportion. In addition, oscillatory modulations of
buoyancy and production are visible. Dissipation is the only term
which does not show the oscillatory signature but monotonically
decays. This is because the small spatial scales responsible for tur-
bulent dissipation also have a small time scale, much smaller than
the buoyancy time scale of 1/N. Beyond x/D ≈ 15, buoyancy and
transport dominate the Fr = 1 budget and balance one another.

Budget distributions are distinctive for all three simulated strat-
ifications in the far wake as shown in Figure 7 (right column). The
budget for the unstratified case remains similar to that of the in-
termediate wake where production is relatively small suggesting
that the wake continues to behave as freely-decaying turbulence.
In addition, advection is balanced by transport and dissipation. For
Fr = 3, all terms are of the same order of magnitude. For both strat-
ified cases, production has order of magnitude O(10−5), two or-
der of magnitude larger than in the unstratified case with O(10−7).
The dissipation takes similar values in the Fr = 3 and 1 wakes. At
Fr = 1, buoyancy and transport remain dominant. This is contrary
to the t.k.e. budget for Fr = 1 at lower Re = 3700 presented in Pal
et al. (2017) where the buoyancy term is balanced by the advection
term in the far-wake.
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Figure 7. Terms in the t.k.e. budget for Fr = ∞ (top row), Fr = 3 (middle row), and Fr = 1 (bottom row) in the near-wake region 0.7 < x/D 6
10 (left column), the intermediate-wake region 10 < x/D 6 40 (middle column), and the far-wake region 40 < x/D 6 70 (right column).
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