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ABSTRACT
This paper is concerned with Lagrangian mean coun-

terparts of familiar Reynolds stresses which arise in turbu-
lent shear flows. The measures are the drift, akin to the
Reynolds shear stress and the pseudomomentum, a measure
of the turbulence intensity. Phillips (2001) has succinctly
expressed the measures in terms of Lagrangian integrals of
Eulerian space-time correlations. However they are diffi-
cult to interpret and so the present work begins by express-
ing them in a more insightful form. Both measures are cal-
culated for turbulent channel flow for a range of Reynolds
numbers up to Reτ = 5200. The pseudomomentum is al-
ways negative and has a sole peak located in wall units in
the low teens while at the highest Reynolds number studied,
the drift is negative in the vicinity of that peak, positive else-
where and largest near the rigid boundary. Finally, the drift
and pseudomomentum are discussed in the context of co-
herent wall layer structures with which they are intricately
linked.

INTRODUCTION
Kraichnan (1977, 1976) long ago showed that a La-

grangian representation of fluid motion has the advantage
of capturing more physics than an Eulerian one. His La-
grangian perturbation theory, however, presumes a specific
representation of Lagrangian motion and restricts attention
to a generalized velocity field u(x, t |s), defined as the ve-
locity measured at time s in a fluid element which passes
through x at time t. On the other hand, if the traditional La-
grangian representation is employed and an exact mapping
of Navier Stokes then taken into a Lagrangian mean refer-
ence frame, we arrive at the generalized Lagrangian mean
(GLM) equations (Andrews & McIntyre, 1978), which can
be written in a form not unlike those given by a simple
Reynolds average but with the familiar Reynolds stresses
replaced by the unfamiliar drift and the pseudomomentums
(Phillips, 1998a). To be precise, GLM parses fluid motion
into unambiguous mean and oscillatory parts, thereby yield-
ing precise definitions for the drift, which expresses the
mean mass transport in excess (or deficit) of any Eulerian
mean flow, and the pseudomomentum, which determines
the force exerted by the fluctuating motion on the medium
(Phillips, 2015).

Drift and pseudomomentum are Lagrangian averages
of interacting velocity fluctuations and thus arise in many
circumstances in the physical sciences, an example being

Stokes (1847) drift. But while Stokes drift occurs in ir-
rotational monochromatic surface waves in quiescent sur-
roundings, the drift in a sheared turbulent flow results from
a fluctuating field that is rotational and interacts with the
shear. Because of that the mathematics describing it is sig-
nificantly more complicated.

Consider, for example, the Lagrangian velocity uξ
i

(with components i = 1,2,3) of a particle initially at posi-
tion x that follows a path determined by the displacement
ξ (x, t) in terms of an Eulerian velocity field ui (x, t). Then

uξ
i

(x, t) = ui (x+ ξ (x, t), t) (1)

and for fluctuations of slope ϵ ≪ 1 and ξ = O(ϵ ), a Taylor
series expansion yields:

uξ
i

(x, t) = ui + ξ jui, j +
1
2
ξ j ξkui, jk + ... (2)

The Lagrangian mean velocity uξ
i

is obtained by averaging
(2) over the time scale of the fluctuations and noting that
ui may comprise both mean ui and fluctuating ŭi parts, as
ui = ui + ŭi . So, since the drift di is the difference between
uξ
i

and the Eulerian mean ui , then (Phillips, 1998a)

di = uξ
i
−ui = ξ j ŭi, j +

1
2
ξ j ξkui, jk + ..., (3)

which reduces to the Stokes drift when ui = 0. Accordingly
the pseudomomentum is

pi = −ξ j,iuℓj , (4)

where uℓ
j
= ŭ j + ξku j,k (Andrews & McIntyre, 1978).

Observe that in contrast with their Eulerian-mean
Reynolds stress counterparts, which are second-order cor-
relations of velocity, the drift and pseudomomentum are
second-order correlations of velocity and displacement.
These can, of course, be evaluated in closed form for sim-
ple oscillatory flows (Stokes, 1847; Phillips et al., 2010),
but that is not the case for fluctuating fields comprised of
a spectrum of wavenumbers. Rather, with a spectrum it is
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expeditious to re-express the velocity-displacement corre-
lations in terms of velocity correlations. That said doing
so is not straightforward, but it can be achieved (Phillips,
2001); we then find that (3) and (4) are expressed in terms
of Lagrangian integrals of Eulerian space-time correlations,
as (5) and (6).

Unfortunately even with the integral form to hand the
space-time correlations therein are difficult to acquire and
the few available from experiments and numerics are not
broad enough to evaluate (5) and (6). To proceed, therefore,
Phillips (2000) developed a model for two point two-time
velocity correlations and used it with DNS results to cal-
culate the drift and pseudomomentum in turbulent channel
flow for Reτ = 180 (Phillips, 2001). He found that the drift
is oriented in the flow direction (that is positive) only near
the wall with a zero at around thirteen wall units, while the
pseudomomentum peaks near the zero in drift and is never
positive. Of immediate interest, of course, is whether these
findings carry over to higher Reynolds numbers (Phillips,
2015) and we shall explore that herein using Lee & Moser’s
(2015) DNS data to Reτ = 5200.

That said, our motivation for evaluating the measures is
broader than Reynolds number dependence and indeed rests
with how best to characterize the structure of turbulent flows
and whether a Lagrangian mean approach will reveal more
about the structure than an Eulerian one. To that end we
note the relationship between drift and coherent structures,
namely robust, reoccurring concentrations of vorticity that
form near boundaries in turbulent shear flows and live over
timescales long with respect to the fluctuating motions.

The structures are characterized by velocity perturba-
tions in the streamwise direction, known as streaks, and
cross-stream perturbations that realize streamwise aligned
rolls; streaks and rolls together comprise a vortex. The as-
sociation of the drift with these vortices is twofold: first, the
vorticity (vortex lines) from which they form moves at the
Lagrangian mean velocity, given by the sum of the Eulerian
mean velocity and the drift (3). Accordingly, Lagrangian
mean field theory indicates that the redistribution of vortic-
ity necessary to the formation of the vortices is effected by
differential drift (and or pseudomomentum) and mean shear
(Phillips, 1998a).

Known too is that such structures are self-sustaining, in
the sense that streaks spawn streamwise aligned rolls, which
in turn spawn streaks, through what some researchers (Hall
& Smith, 1988; Bennett et al., 1991; Hall & Sherwin, 2010)
describe as a Rayleigh vortex-wave interaction and others
(Jimnez & Moin, 1991; Keefe et al., 1992; Waleffe, 1995;
Hamilton et al., 1995) describe as regeneration. Numeri-
cal studies further show that “plane wave modes are present
(and) play an important if not essential role in turbulent wall
bounded flows” (Sirovich et al., 1990). Nevertheless, in
spite of the ubiquity of vortices and waves being well es-
tablished and the genesis of the waves well understood, the
genesis of the vortices remains unclear.

To that end we take two paths: first, since much is
known about the mechanics of the vortices in terms of
Reynolds stress and shear (Sreenivasan & Sahay, 1997;
Klewicki et al., 2007), we want to clarify the role of these
properties in the drift and pseudomomentum. Second,
we want to utilize the drift and pseudomomentum in La-
grangian mean field theory to explore the origin of the vor-
tices (Phillips, 1998a, 2015).

FORMULATION
In order to deduce the measures (3) and (4),

Phillips (2001) considers a fluctuating finite amplitude
three-dimensional disturbance defined by a spectrum of
wavenumbers riding on a parallel Eulerian mean shear flow
U (z) of constant density aligned in the x direction with y

cross stream and z normal to the wall. He shows that the
streamwise component of the drift D1(z), which has dimen-
sions of velocity, is:

D1 = −
∂

∂z

∫ τ⋆

0
Q31dτ− 1

2
d2U
dz2

∫ 0

τ⋆

∫ ζ

0
Q33dτdζ, (5)

while the streamwise component of pseudomomentum,
which likewise has dimensions of velocity, is

P1 =

∫ τ⋆

0

∂

∂r
Q j jdτ+

dU
dz

∫ 0

τ⋆

∫ ζ

0

∂

∂r
(Q31 −Q13)dτdζ

+

(
dU
dz

)2 ∫ 0

τ⋆

∫ χ

0

∫ ζ

τ⋆

∂

∂r
Q33dτdζdχ. (6)

Herein Qi j are space-time correlations at time delay τ and
spatial delay r = Uτ, while ζ and χ are dummy variables
for τ. Moreover τ∗(z) is a unique value of τ determined by
integral constraints (Phillips, 2001, 2015).

Unfortunately Qi j is not easily acquired. Because of
that Phillips (2000) modeled it using the Kovasznay-Corrsin
(Kovasznay, 1953; Corrsin, 1959) conjecture, which in
essence says that Qi j is separable as magnitude, set by
the one point velocity correlation ŭi ŭ j , hereafter written as
uiu j , and the unity normalized correlation Ri j , rendering

Qi j (z;r, τ) = uiu j (z) Ri j (Uτ,0,0, τ). (7)

To evaluate (7) we thus require U , uiu j and Ri j . De-
tails of U and uiu j are available for specific Reynolds num-
bers from direct simulations and any Reynolds number from
asymptotically correct integral expressions for boundary
layer and channel flows (Phillips, 1987; Phillips & Rat-
nanather, 1990; Phillips, 1994). The correlation Ri j is given
in Phillips (2000).

Drift and Pseudomomentum
On substituting (7) into (5), (6) and introducing the La-

grangian velocity scales A , B, C , U , V and W defined in
terms of Ri j in (10)-(11), we find approximations for the
drift (Phillips, 2015)

−D1 =
d
dz

(
A uw

)
+B2w2 d2U

dz2 (8)

and pseudomomentum

−P1 =
u2

U
+
v2

V
+
w2

W

1+
(
C

dU
dz

)2 . (9)

We see that the drift is closely related to differential
Reynolds stress uw while the pseudomomentum is related
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Figure 1. Profiles of drift D1 and pseudomomentum P1
normalized by Uτ for turbulent channel flow as a function
of distance from the wall in: (a) wall units and (b) outer
units. Herein Reτ = 180, 550, 1000, 2000, 4200 and 5200;
D1 _ and P1 + at Reτ = 180 from Phillips (2001).

to the turbulence intensities u2, v2 and w2. Herein the La-
grangian time scales are:

A =

∫ τ⋆

0
R31dτ, B2 = −1

2

∫ 0

τ⋆

∫ ζ

0
R33dτdζ (10)

and

C 2 = −W
∫ 0

τ⋆

∫ χ

0

∫ ζ

τ⋆

∂

∂r
R33dτdζdχ, (11)

while the velocity scales are

[U −1,V −1,W −1] = −
∫ τ⋆

0

∂Rj j

∂r
dτ. (12)

RESULTS
The drift (8) and pseudomomentum (9) were calcu-

lated using the DNS data of Lee & Moser (2015) at Reτ =
180, 550, 1000, 2000 and 5200, with data by Lozano-Duran
& Jiménez (2014) at Reτ = 4200. Unless otherwise spec-
ified results are given in wall units, which defer to length
ν/Ũτ and time ν/Ũ2

τ scales, linked by the friction velocity
Ũτ = (νdŨ/dz̃ |wall)

1
2 , with Reτ = δ = δ̃Ũτ/ν.

Reynolds number dependence
To deduce the dependence of drift and pseudomomen-

tum on Reynolds number the results are plotted at all Reτ
in both wall units (figure 1(a)) and outer units (figure 1(b)),
where the independent variable is z/δ.

Looking first at the drift with increasing distance from
the wall in wall units, we observe collapse, or close to it, for
all Reτ only in the viscous sublayer. Each profile then goes
on to a peak that is positive and diminishes with increased
Reτ . Profiles for all Reτ then intersect at much the same lo-
cation z = z f ∈ (13,14). Furthermore, since the drift is neg-
ative at z f all profiles necessarily exhibit a zero at z < z f .
A second peak, this one negative, occurs in the buffer layer
near z ∈ (15,25); this peak diminishes in magnitude and
moves towards z f as Reτ increases. Near z ∈ (30,60), as
the buffer layer is transitioning to the logarithmic region, the
profiles reach a third peak. This peak is positive for all cases
except Reτ = 180 and from it the drift varies monotonically
to its centerline value, a value that is markedly negative at
the lowest Reτ but essentially zero at the highest Reτ . Fi-
nally, while all profiles exhibit consistent behavior across
the channel domain, they appear to relax, as Reτ increases,
to the profile at the highest Reτ . Indeed there is little dif-
ference between the curves at the two highest Reτ , with the
inference that the drift is asymptotic to a limiting form and
that the Reτ = 5200 results are close to that form.

On the other hand the pseudomomentum is much sim-
pler than the drift and is always negative. Looking in more
detail we find as z increases that, in contrast to the drift, col-
lapse extends into the buffer layer, to approximately z = 10.
The profiles peak in the vicinity of but not at z f and then
relax, irrespective of Reτ , to approximately the same non-
zero centerline value.

When viewed in outer units (figure 1(b)), on the other
hand, the profiles for both measures are distinctly separate
not only in the inner region as we would expect, but also
in the outer region where our mindset is some degree of
collapse. Of course each profile depicts a clear logarithmic
decay and may be asymptotic to a distinct curve in the outer
region.

Time and velocity scales
The mean velocity, variance and covariance collapse

in the wall region, so the lack of collapse depicted by D1
and P1 in figure 1(a) in the wall region must, in view of (8)
and (9), reflect a Reynolds number dependence in the time
(A ,B,C ) and velocity scales (U ,V ,W ).

The time scales are plotted in figures 2(a) and 2(b), the
former at Reτ = 180 and the latter at Reτ = 5200. Observe
that the value of each scale at z = 0 and z/δ = 1 is little
affected by Reτ . Moreover, all profiles are essentially con-
stant in the sublayer and ultimately (in fact over much of the
layer) grow with distance from the wall. But the profiles in
the interior and specifically in the wall region, are affected
by Reynolds number. This dependence is particularly evi-
dent in the differential of A , as we observe in figure 3 al-
though, in line with our earlier findings, it diminishes with
increasing Reynolds number, suggesting that A , B and C
approach a terminal form.

Lastly we plot, in figures 4(a) and 4(b), the velocity
scales at the lowest and highest Reτ . Here we find that
although the scales have the same generic form, to wit ini-
tially constant and ultimately almost logarithmic, the details
are very much Reynolds number related. For example the
low Reynolds number results for U and V exhibit two re-
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Figure 2. Profiles of the time scales A , B, C in wall units
as a function of distance z from the boundary in outer units,
for channel flow at (a) Reτ = 180 and (b) Reτ = 5200.
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Figure 3. Differential time scale dA /dz as a function of
distance z from the boundary in wall units, for channel flow
at Reτ = 180, 550, 1000, 2000, 4200 and 5200.

gions of growth, while the higher ones do not. Also, in con-
trast to the time scales, the end values at z = 0 and z/δ = 1
change significantly with Reynolds number, although much
of that dependence is offset when the scales are utilized in
(9) and all is summated to depict P1.

Coherent structures
How though do the drift and pseudomomentum affect

or effect the etiology of wall layer structures? Looking first
to the drift, we saw that its sign is mixed throughout the
layer; specifically that it is positive in the viscous sublayer,
negative for much of the buffer region and, depending on
the Reynolds number, mixed in the logarithmic and outer
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Figure 4. Profiles of the velocity scales U , V , W in wall
units as a function of distance z from the boundary in outer
units for channel flow at (a) Reτ = 180 and (b) Reτ = 5200.
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Figure 5. Differential pseudomomentum dP1/dz with dis-
tance z from the boundary in wall units, for Reτ = 180, 550,
1000, 2000, 4200 and 5200.

regions. These alternating layers of positive and negative
drift are clearly evident in figure 1(a) along with the find-
ing that it appears to approach a terminal form as Reynolds
number increases. At all Reynolds numbers, however, the
drift is strongest immediately adjacent to the wall and is
dominated in that region by the term dA uw/dz. Indeed,
because uw plays such a key role, it is instructive to rewrite
(8) in a manner that highlights uw, viz

−D1 =
duw
dz

(
A +B2w2

)
+uw

dA

dz
−B2w2

δ
. (13)

Of course the prominence of uw in the drift should come
as no surprise, because the importance of of uw to the me-
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Figure 6. Stability boundaries for the onset of streamwise
vortex structure depicted by the linear steady states of CLg
theory (Phillips, 1998a) describing periodic Poiseuille flow
for Reτ = 180, 550, 1000, 2000, 4200 and 5200, expressed
as streak spacing L (2 rolls) in wall units against Reτ . The
asymptotes for instability to two- and three-dimensional
waves determined numerically are drawn at Reτ = 45 and
Reτ = 64.8 (Orszag & Patera, 1983). Numerical results for
• Roll spacing and △ ensemble average of streak spacing at
Reτ = 80 (Sirovich et al., 1990).

chanics of bounded turbulent shear flow and the presence of
near wall structure has long been known, as has the impor-
tance is its wall normal derivative and where that derivative
is zero (Sreenivasan & Sahay, 1997).

Specifically, we know that its derivative is zero in the
log region where, from Townsend’s (1976) attached eddy
hypothesis, asymptotic analysis (Phillips, 1987; Phillips &
Ratnanather, 1990) and numerous high Reynolds number
experiments (Marusic et al., 2013)

u2
i
= Ai − Bi ln

( z
δ

)
for (i = 1,2,3). (14)

Here B3 = 0 and the remaining Ai and Bi are positive con-
stants, so w2 ∼ A3. Moreover, because uw ∼ −1 in the log
region, (13) then reduces to

D1 ∼
dA

dz
+

B2 A3
δ
. (15)

Furthermore, we find from figures 2 and 3 that the second
term in (15) dominates in the log region, which means that
the drift varies as B2, that is logarithmically with z, as does
the pseudomomentum and mean velocity.

We thus associate the large scale roll-mode structures
observed in the log region with this logarithmic variation
in drift and the more intense near wall structures with
drift dominated by duw/dz, which necessarily varies alge-
braically (Phillips, 1987). Of course each can be identified
with an exact coherent state solution (Nagata, 1990; Wal-
effe, 1998), one adjacent to the wall and the other further
out (Deguchi & Hall, 2014). But the inner and outer struc-
tures would appear to be not closely coupled, because rough
walls are known to obliterate only those near wall, not those
further out.

But what of the origin of the vortices? On a vastly
different scale stadium sized vortices form in the upper
ocean through the interaction of differential drift and shear

(Craik & Leibovich, 1976). We emphasize that the insta-
bility mechanism exciting them is not the same as would
occur in a bounded turbulent flow, nevertheless the general-
ized theory describing the later does retain the seminal idea
of the former, vis-à-vis the interaction of differential drift
and/or pseudomomentum and shear.

The generalized theory is built on the premise that the
time scales of the shear and coherent structures are long
with respect to the time scales of the fluctuating field and,
along with drift and pseudomomentum, is also derived from
GLM. Several instabilities to streamwise vortices are possi-
ble under this theory but the one of relevance is the CLg
instability (Craik, 1982; Phillips, 1998a, 2003). Herein the
velocity scale of the streaks far exceeds that of the rolls,
which results in the streaks acting to modulate the fluctuat-
ing field. Interestingly, although modulation initially sup-
presses the instability (Phillips & Wu, 1994), it ultimately
acts as a catalyst to a self sustaining streak-roll process
(Phillips, 1998b) not unlike those proposed by Hall & Smith
(1988) and Waleffe (1995). The question remaining, of
course, is whether the structure depicted by CLg theory us-
ing our distributions of drift and pseudomomentum concur
with observations of wall layer structure and we conclude
by addressing that question.

Key to CLg instability theory is differential pseudomo-
mentum and we see in figure 5 that the differential is largely
negative and confined to the sublayer and buffer layer re-
gions, so streamwise vortices would occur there provided
the Craik-Phillips-Shen criterion (Craik, 1982; Phillips,
2003) to instability to streamwise vortices is satisfied, which
it is (Phillips & Shen, 1996). In view of that Phillips (2015)
explores instability further. He does so by first assuming
that integral features of the turbulent flow field are captured
by periodic Poiseuille flow, that is pressure driven flow be-
tween parallel horizontal plates subjected to waves traveling
in the flow direction. The flow is doubly periodic (stream-
wise and spanwise) and as Reynolds number increases the
interaction is unstable first to two and subsequently three
dimensional waves (Orszag & Kells, 1980) whose ampli-
tudes grow until inhibited by nonlinearities, at which point
the flow equilibrates (Rozhdestvensky & Simakin, 1984;
Keefe et al., 1992). Key here is that equilibrated flow com-
prised of 24 modes “reflect(s) the basic integral properties
of turbulent flows rather well” (Rozhdestvensky & Simakin,
1984). In fact only 16 modes are necessary to ensure U
depicts logarithmic behavior (Keefe et al., 1992). Phillips
(2015) solves for the steady states that determine the stabil-
ity boundary to the formation of streamwise vortices.

As plotted in figure 6, the boundary depicts the streak
spacing L determined by a counter-rotating vortex pair,
against Reτ . Included therein are asymptotes for instabil-
ity to two- and three-dimensional waves, viz Reτ = 45 and
Reτ = 64.8 (Orszag & Patera, 1983), the later of which
is closely consistent with our Reτ = 63.5 onset boundary
to streamwise vortices and the theoretical minimum value
(Reτ ≈ 68.7) at which U can exhibit logarithmic behav-
ior (Phillips, 1994). Consistent too are spacings found nu-
merically at Reτ = 80 (Sirovich et al., 1990). Finally, we
note that onset, depicted by the nose of the curves, occurs
at L ≈ 120 wall units, a value near the widely observed
circa 100 mean streak spacing first reported by Kline et al.
(1967). Thus, to conclude, Lagrangian mean field theory
not only captures key structural features in the wall region
but also isolates a key (not sole) instability mechanism re-
sponsible for their formation, namely CLg.
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