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ABSTRACT
The main approach to identifying coherent structures

in a flow field is the Proper Orthogonal Decomposition, due
to its simplicity and effectiveness. However it is a data in-
tensive method which becomes more expensive as the data
field increases in size. The difficulty pertains mostly when a
three-dimensional decomposition is performed, and the lim-
iting factor is storing and loading large data fields of up to
billions of gridpoints. This restriction is a conseuqence of
the fact that the I/O bandwidth of supercomputers has not
been at the same developmental pace as the CPUs. Lossy
compression can reduce the size of the data fields and ac-
celerate the computations. The strategy we suggest here
relies on data compression via Discrete Chebyshev Trans-
form (or alternatively Discrete Legendre Transform) which
leaves invariant the auto-correlation matrix which lies at the
core of the POD method. We show that by discarding over
90% of the data we can still retrieve a good proper orto-
honal basis of the data set which deviates from the original
by 10−2 in the L2 norm.

INTRODUCTION
Proper Orthogonal Decomposition (POD), and in par-

ticular the method of snapshots (Sirovich, 1987), has been
widely used to pinpoint coherent structures in highly turbu-
lent flows. The idea is to store a number of decorrelated in-
stantaneous data fields, build the covariance matrix associ-
ated with this data set, and decouple the dynamics from the
spatial components by performing an eigenvalue decompo-
sition. However with increasing problem size solving the
eigenvalue problem is no longer the single most challenge
of a POD computation. The data intensive nature of the
POD procedure encounters an increasing difficulty due to
slow speeds of the I/O on modern architectures. Although
current machines have developed considerably in terms of
processor speed and intranetwork connectivity, the speeds
of the read/write operations have not followed the same
trend.

The current work proposes a simple strategy to in-

Figure 1. Flow past a cylinder at Reynolds number 100

crease the computational speed of a POD, which can be
employed in almost any CFD code, although we show-
case it here in Nek5000 (Fischer et al., 2015). The idea
is based on compressing/truncating the data using the Dis-
crete Cosine/Chebyshev Transform (DCT) and using the
compressed/truncated data set to perform the POD anal-
ysis. Compression via data truncation is known as lossy
compression. A similar approach has been used on data
compressed using wavelets (Uytterhoeven & Roose, 1997),
however that strategy required a stage of data decompres-
sion in order to retrieve the dominant modes. Since the DCT
is an orthogonal transform, such a step is not needed, ren-
dering our approach less prone to errors due to many con-
versions and also allows us handle better the error incurred
through lossy compression.

The case under consideration here is a classical exam-
ple, the flow past a cylinder in two dimensions at Reynolds
number 100. This particular case has been extensively stud-
ied and we refer the reader for example to Venturi (2006).

DATA COMPRESSION/TRUNCATION
The DCT has the property of being the optimal approx-

imation of the Karhunen-Loéve Transform(KLT). As is well
known in the coherent structures community the Karhunen-
Loéve transform is closely related to Principal Component
Analysis which laid the grounds for the methods of snap-
shots of the Proper Orthogonal Decomposition, Sirovich
(1987).
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Figure 2. Flow past a cylinder at Reynolds number 100,
data field compressed at 97% and error 10−2

The DCT has also been the preferred method for im-
age compression, serving as the basis for the JPEG format
Ahmed et al. (1974).There exists a proof that the KLT is
optimal for the truncation of a signal in rms norm, however
we could show that this is simlar in L2 norm. Recently we
developed a data compression algorithm for scientific data
Marin et al. (2016) which we equipped with an a priori er-
ror estimator and observed that by discarding up to 97% of
the data there is no qualitative information loss.

The DCT is an orthogonal transform which has optimal
energy compactness properties, i.e. given a signal it reshuf-
fles the information such that the highest energy modes are
stored in the first few components, thus allowing for an ef-
ficient truncation of the data.

The orthogonality property of the DCT transform, T ,
reads

T T T = T T T = I . (1)

Given a velocity field u the energy norm becomes discretely

∫
u2 ≈ uT Bu (2)

where B is diagonal matrix constructed in a three dimen-
sional set up as the tensor product of one dimensional mass
matrices B1, i.e. B=B1⊗B1⊗B1. On a Chebyshev grid the
mass matrix B1 = π

n I, where n is the number of grid points
within one mesh element in any direction, and I is the iden-
tity matrix. We can now easily note that the energy norm
in real space is equivalent discretely to the energy norm in
DCT space

∫
u2 = (T u)T B(T u) = uT T T BT u = uT Bu (3)

where we used the fact that the matrix yielding the integra-
tion weights is a diagonal factor of the identity matrix, and
thus T T BT = BT T T = B.

Now consider a truncated signal ũ where we removed
a certain amount of data such that

∫
(u− ũ)2 ≤ ε with an ε

prescribed by the user. From Equation 3 we have that also
for the truncated quantity ũT T T BT ũ = ũT Bũ.

These observations facilitated the derivation of a
straight forward a priori error estimator by which we can
easily assess the error committed via truncation. The claim
that 97% of data truncation (at an error of 10−2 in energy
norm) preserves the relevant data is illustrated in Figure 2
where the original behaviour of the cylinder wake is pre-
served even by retaining only 3% of the original signal in
Figure 1.
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Figure 3. Eigenvalues decay: (blue) various truncation
levels, (black) original matrix

PROPER ORTHOGONAL DECOMPOSITION
The underlying assumption of the POD is that the data

field u can be decomposed as

u = ∑
k

ak(t)φk(t) . (4)

To determine both ak and φk, and the subsequent flow dy-
namics, the POD requires a number M of snapshots which
are assembled into the covariance matrix, i.e.:

Ci j =
∫

u(x, ti)u(x, t j)dΩ, x,y ∈Ω (5)

where i, j = 1, M. Discretely this matrix can be represented
as Ci j = uT

i Bu j.
If we compute the covariance matrix on the truncated

signal then we have

C̃i j = ũT
i Bũ j = uT

i Bu j−Σi j =Ci j−Σi j (6)

where λ̃i are the eigenvalues of the truncated matrix C̃ and
Σi j ≤ ε for all i, j = 1, . . .M.

The central observation is that the eigenvalues of C̃, as
a symmetric matrix, must obey

tr(C̃) = ∑ λ̃i. (7)

If we consider a perturbation matrix which enjoys the same
properties as the covariance matrix (which Σ does by con-
struction) we can say even more about the eigenvalues of
both perturbed and unperturbed matrices as will soon be
shown.

Lossy compression of the data translates, in the case
of the covariance matrix, to a perturbation stemming from
the amount of information truncated. Thus the more we
compress the data the higher the perturbation in the covari-
ance matrix. However we know this perturbation since it
was imposed by he user. We aim to assess here how much
truncation/compression is permissible in order to obtain the
same POD decomposition.

Assessing the impact of the perturbation of the covari-
ance matrix on its eigenvalues falls into the filed of matrix

2

1B-1



perturbation theory, Stewart & Sun (1990), which provides
clear boundedness results for symmetric matrices such as
the covariance matrix. We cite in particular Weyl’s theo-
rem, Weyl (1912), which states that for a matrix C = C̃+Σ

the eigenvalues will be bounded by the norm of the pertur-
bation matrix Σ

|λ̃k−λk| ≤ ‖Σ‖2 , (8)

where the matrix 2-norm is given by the maximum eigen-
value ‖Σ‖2 = λmax. In our case the norm of the matrix Σ

is easy to compute since every entry Σi j ≤ ε where ε is im-
posed by the user a priori. Also Σ is a symmetric positive
definite matrix and shares the same properties as the under-
lying covariance matrix C.

In the same vein a bound on the of sum all eigenvalues
is given be the Weilandt-Hoffman theorem

M

∑
k
(λ̃k−λk)

2 ≤ ‖Σ‖F . (9)

where ‖Σ‖F is the Frobenius norm.
In Figure 3 the decay of the eigenvalues for compres-

sions ranging from 97% down to no compression is dis-
played. The relationship between error and compression
ratio is illustrated in Figure 4. To read these plots in con-
junction we take the example of the most severe compres-
sion 97% and in Figure 4 note that this incurs a tolerated
error of 10−2, however in Table 1 the committed error in
practice was even lower at 4.83−3. This translates into a
perturbation in the covariance matrix and in Figure 3 the
eigenvalues display the highest deviation, especially after
the 6-th mode. If we consider a compression of approx-
imately 66% this gives an error of 1.24−5 and we see in
Figure 3 that the fourth level of compression yields a decay
similar to that of the original unperturbed matrix. We note
than anything lower than an error of 10−5 gives already a
decay indistinguishable from that of the original matrix.

In Figure 5 we illustrate the reliability of Weyl’s result
in giving an upper bound that is not overestimating the error.
The deviation of the perturbed eigenvalues (black) from the
estimate based on the norm of the perturbation matrix (red)
is unnoticeable in the regime of 10−3− 10−9. For values
lower than 10−9 the round off errors have a higher impact
which is to be expected, and the eigenvalues are far closer
to the ones of the original matrix. Imposing a tolerance of
10−9 would have almost no impact on the covariance and
the modes.

Noting now using Equation 3 that the entries of the ma-
trix C are invariant to the DCT transform, i.e. operating with
u or its counterpart T u in DCT space yields the same result.

The second step in determining the dominant modes is
to perform an eigenvalue decomposition of the matrix C̃ and
note how they deviate form the original matrix C.

RESULTS
After performing a POD analysis using the method of

snapshots on data truncated by 97% we compare in Fig-
ure 6 and Figure 7 the first modes between original data and
compressed data, and in Figure 8 and Figure 9 the second
modes. There is no notable difference although on closer
scrutiny there is an error between the modes proportional to
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Figure 4. Error versus compression ratio
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Figure 5. Perturbation in eigenvalues |λ̃k − λk| (here for
the maximum eigenvalue) as a function of the norm of
the perturbation matrix ‖Σ‖2. (black) eigenvalue deviation,
(red) Weyl’s estimate

Table 1. Error versus Compression ratio.

Threshold Error Compression ratio

10−2 4.83−3 0.97

10−3 8.12−4 0.92

10−4 1.02−4 0.81

10−5 1.24−5 0.66

10−6 1.40−6 0.48

10−7 1.36−7 0.31

10−8 1.35−8 0.17

10−9 1.29−9 0.08

10−10 1.15−10 0.02

the truncation error due to compression, visible especially
in the tail of the wake and across element boundaries. By
assessing the decay of the eigenvalues which are a stand-in
for the energy decay corresponding to each mode we ob-
serve in Figure 3 that the first 6 modes which encapsulate in
this case around 98.995% of the total energy have an identi-

3

1B-1



Figure 6. Mode 1 for unperturbed original matrix

Figure 7. Mode 1 for data compressed at 97% and error
10−2

Figure 8. Mode 2 for unperturbed original matrix

Figure 9. Mode 2 for data compressed at 97% and error
10−2

cal behaviour, however the eigenvalues deviate significantly
after mode 6.

For a simple study of the modes and the system be-
haviour a higher truncation seems to be satisfactory, how-
ever for constructing a reduced order model we indeed need
to have as high accuracy as possible. For this particular
case we note from the eigenvalues decay in Figure 3 an im-
posed tolerance of 10−5, corresponding to 66% compres-
sion is sufficient for removing any deviation even in the
higher modes. In Figure 10-11 we note that the behaviour
is unchanged and no minor artifacts are present (as was the
case with 10−2 errors), even down to mode 6 (Figure 12)
which has a very low energy contribution of 0.002 still the
mode is fully retrieved with no modifications.

CONCLUSIONS AND OUTLOOK
The POD analysis performed on compressed data of up

to 97% (i.e. disregarding 97% of the information) has been
shown to yield an error of approximately 10−2 in energy
norm, which is undetectable from both a visual perspective
as well as in terms of preserving the relevant information.

Figure 10. Mode 1 for data compressed at 66% with an
error of 10−5

Figure 11. Mode 2 for data compressed at 66% with an
error of 10−5

Figure 12. Mode 6 for data compressed at 66% with an
error of 10−5

The approach suggested here to use compressed data for
POD analysis relies on this qualitative behaviour, as well as
a proof that the most relevant modes are preserved thanks to
the properties of the compression strategy via DCT trans-
forms. To assess what is the tolerable deviation in eigen-
values and the subsequent reconstruction of the modes we
invoked results from matrix perturbation theory and showed
that the deviation in eigenvalues is given by the norm of the
perturbation matrix, which in turn, is controlled by the user
via the imposed tolerance.

We have shown that for reduced order models it is
possible to compress at 66% ratio and there is essentially
no data loss even for the lowest insignificant modes. The
simplicity of the approach and the computational gain it
brings about render this strategy for evaluating the domi-
nant modes in a simulation a suitable feature in any CFD
code.
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