
10th International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), Chicago, USA, July, 2017
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ABSTRACT
In the present work the effects of different types of rough-

ness elements on flow separation over a curved boundary is inves-
tigsted by means of direct numerical simulations. The geometry
and boundary conditions are such that the basic physics of the flow
over bluff bodies are represented. Two types of roughness elements
are considered, dimples and spherical beads. The Reynolds num-
ber, Reh, based on the freestream velocity and height, varied from
3,000 to 30,000. The results are in good qualitative agreement with
results for flow over bluff bodies with surface roughness. In partic-
ular, the roughness elements are very effective in causing transi-
tion of the boundary layer at a much lower Reynolds numbers when
compared to a smooth surface. For the spherical beads the drag
coefficient exhibits a minimum and quickly rises as the Reynolds
number increases. For the dimples the minimum drag coefficient
remains constant and independent of the Reynolds number within
the range considered in this study. The reason for this different be-
havior lies in the way the boundary layer grows between the two
different roughness elements. For the spherical beads the transition
shifts upstream and moves toward the stagnation point on the front
of the bump as the Reynolds number increases. An earlier transition
means the boundary layer starts growing thicker earlier and has less
momentum to overcome the adverse pressure gradient. As a result
the separation point moves upstream too giving rise to increased
drag. In contrast the transition and separation points are weakly
dependent on the Reynolds number for the case of the dimples.

INTRODUCTION
Various roughness elements have been long used to reduce drag

on both bluff and streamlined bodies. Figure 1 shows a plot of the
drag coefficient versus Reynolds number for spheres with smooth
or roughened surfaces. For the smooth sphere the drag coefficient
begins to drop around a Reynolds number Re ∼ 400,000, (where Re
is based on the free stream velocity U , diameter of the sphere D).
The drag coefficient reaches a minimum value of 0.08 after which
it starts to augment as the Reynolds number increases. This phe-
nomena is termed the drag crisis and is associated with transition of
the boundary layers from laminar to turbulent. When roughness el-
ements are used the drag crisis can be dramatically accelerated and
the drag coefficient can be lowered compared to that of a smooth
sphere at the same Reynolds number. However the type of rough-
ness elements can play a big role on the magnitude and behavior
of the drag in the post-critical regime. For example, Achenbach

(1974) showed that the drag crisis on a sphere can be significantly
accelerated by using small glass beads glued to its surface or by
roughening the surface with sandpaper. As the size of the rough-
ness elements increases the critical Reynolds number is reduced.
However the minimum drag coefficient can not be maintained and
it rises very quickly as the Reynolds number is increased. Güven
et al. (1980) and Achenbach (1971) conducted wind tunnel experi-
ments on cylinders with sandpaper wrapped around their perimeter
and they found that this kind of distributed roughness causes a much
quicker thickening of the boundary layer with increasing Reynolds
number. In particular, as the Reynolds number increases both the
transition and separation point move upstream resulting in an in-
crease in drag. Dimples are another form of roughness elements
commonly employed to reduce drag. In contrary to random or dis-
tributed roughness dimples can maintain the low drag in the post-
critical region. Bearman & Harvey (1976) conducted wind tunnel
tests on stationary and spinning golf balls and found out that the
shape of the dimples can affect the minimum drag of the golf ball.
In particular, golf ball with hexagonal dimples had a lower drag co-
efficient than golf balls with spherical dimples. In both cases the
drag coefficient for Re = 80000−240000 remained approximately
constant. Choi et al. (2006) carried out wind tunnel experiments
on a dimpled sphere and showed that dimples cause local flow sep-
aration and trigger the shear layer instability along the separating
shear layer, resulting in the generation of large turbulence intensity.
AOKI et al. (2012) conducted experiments with dimpled spheres
where they varied the depth of the dimples. They found that as
the dimple depth increased the critical Reynolds number decreased.
However, the separation point shifted to the upstream side and the
drag coefficient became larger in the super-critical Reynolds num-
ber region. Flow visualization using an oil film method showed that
as the dimple depth increased flow separation inside dimples moves
upstream. It is not clear though how the transition point is affected
by dimple depth. Finally Aoki et al. (2003) showed that as the num-
ber of dimples on a sphere increased the critical Reynolds number
decreased and the minimum drag coefficient increased. Using an
oil film method they showed that the separation point in the super
critical regime was delayed.

The present work presents a series of direct numerical simu-
lations (DNS) of flow over a curved boundary. The geometry and
boundary conditions are such that the basic physics of the flow over
bluff bodies are represented. The surface is either smooth, covered
with dimples or is roughened using spherical beads.
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Figure 1. Plot of drag coefficient CD versus Reynolds number for
a stationary smooth sphere and various golf balls. Lines represent:
—; smooth sphere , - - -; dimpled sphere, - B -; dimpled sphere - ·
-; rough sphere.

PROBLEM SETUP
The three geometries used in this study are shown in Figure 2.

All surfaces have a predominantly cylindrical shape. The smooth
bump shown in Figure 2a has a maximum height, h = 15d and a
length of L = 80d (d is the dimple depth defined below), and is part
of a cylinder with radius of 60.83. The geometry shown in Fig-
ure 2b has the same basic shape but it contains 7 rows of spherical
dimples. Each row is staggered with respect to the previous one.
The spherical dimples have a maximum depth of d = 1 and an in-
scribed diameter of 10d. The geometry shown in Figure 2c has a
rough surface created by placing small spheres with diameter of 1d
on the top. In total there are 77 staggered rows of spheres cover-
ing the entire surface of the bump. The spheres are placed 1.22d
apart in the spanwise direction. Note that only 90% of the sphere
protrudes into the flow, while the remaining part is immersed in the
bump. The resulting surface topology is very similar to the one used
by Achenbach (1974), and will enable qualitative comparisons with
our computations.

An outline of the computational domain is shown in Figure 3.
The streamwise, wall-normal and spanwise directions are noted by
x, y and z respectively. The bump extends from −40d to 40d and
from 0 to 15d in the streamwise and wall-normal directions re-
spectively. The computational domain is a box with dimensions
260d × 120d × 11d. The bump which is not aligned with the grid
is introduced using an immersed boundary formulation. At the inlet
a uniform velocity profile is specified. From the inlet to the front
of the bump there is a slip-wall. This prevents the boundary layer
from growing in front of the bump. A slip wall is specified at the
top and at the outflow boundary a convective boundary condition is
used. The Reynolds number based on the freestream velocity and
the height of the bump was varied from 7500 < Reh < 30000.

The simulations are carried out using an in-house finite-
difference Navier-Stokes solver. The governing equations are dis-
cretized on a structured grid in Cartesian coordinates. The bound-
ary conditions on the curved surface, which is not aligned with the
grid lines, are imposed using an immersed-boundary formulation
Yang & Balaras (2006). An exact, semi-implicit, projection method
is used for the time advancement. All terms are treated explic-
itly using the Runge-Kutta third order scheme, except for the vis-
cous and convective terms in the wall-normal direction which are
treated implicitly using a second order Crank-Nicholson scheme.
All spatial derivatives are discretized using second-order central-
differences on a staggered grid. The code is parallelized using a
classical domain decomposition approach. Details on the overall
formulation together with a comprehensive validation study can be
found in Balaras (2004); Balaras & Yang (2005); Yang & Balaras
(2006).

A grid refinement study was performed for the case of the dim-
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Figure 2. Geometries used in this study a) smooth bump,
b)dimpled bump, and c) rough bump

Figure 3. Outline of the computational domain and boundary con-
ditions.

pled geometry at the highest Reynolds, Reh = 30000. Three grid
resolutions were considered. The coarse grid contains 947×102×
952 points in x,y, and z directions respectively. The medium grid
contains 1421× 152× 1452 in x,y, and z respectively, which is a
50% grid refinement in each direction. The fine grid contains con-
tains 1900× 1395× 200 points, out of which, 1300× 1100× 200
points are uniformly distributed in a box encompassing the bump.
The grid resolution on the fine grid is twice that on the coarse grid in
each direction. Figure 4 shows plots of the pressure coefficient, Cp,
and the skin friction coefficient, C f , for the three grids. The coeffi-
cients are averaged over time and the spanwise direction. The skin
friction coefficient for the coarse grid is underestimated and there is
a slightly different behavior of the pressure at the back of the bump.
However the medium and fine grids are in very close agreement
with each other indicating that the solution is grid independent. All
the results below are from the fine grid.
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Figure 4. Plots of a) the skin friction coefficient C f and b) the
pressure coefficient Cp for the case of the dimpled bump at Reh =

30000 and for three different grids. Lines represent - · -; coarse, - -
-; medium, — fine.

Reh

CD

Figure 5. Plot of the drag coefficient versus Reynolds number.
Symbol represent: − ◦−; smooth bump, −�−; dimpled bump,
−B−; rough bump

RESULTS
We start the discussion by looking at the behavior of the drag

coefficient for the three different surfaces (see Figure 5). For the
smooth surface the drag coefficient is Cd = 0.47 at Reh = 11000
and decreases to Cd = 0.35 at Reh = 22000 marking the onset of
the drag crisis. For the rough surface the drag coefficient is initially,
Cd = 0.5 at Reh = 5500. The presence of the small spheres on the
surface increase the wetted area and result in higher drag than the
smooth case. However at Reh = 9900 the drag coefficient drops to
Cd = 0.34 indicating that the boundary layer transitions from lam-
inar to turbulent. Further increase in the Reynolds number result
in an increase of the drag. This behavior is qualitatively similar
to the one observed on spheres and cylinders with surface rough-
ness. For the case of the dimpled surface the drag coefficient drops
to a value of Cd = 0.3 at Reh = 11000 and remains low at higher
Reynolds numbers. This is a confirmation that the present config-
uration exhibits the same trends observed on generic bluff bodies
and is suitable for studying the effects of surface roughness on flow
separation.

Smooth surface
First we present some results for the flow over the smooth sur-

face. Figure 6 shows contours of the spanwise vorticity, ωz, at a
spanwise plane and for two Reynolds numbers in the subcritical
regime. The boundary layer remains laminar over the surface and it
separates near the top. After separation the shear layer becomes un-
stable and rolls-up into a vortex sheet. The vortex sheet breaks down
into smaller vortices creating a turbulent wake. As the Reynolds

a)

b)

Figure 6. Contours of the instantaneous span wise vorticity ωz at
a span wise plane for the case of the smooth bump. a) Reh = 7500
and b) a) Reh = 15000.
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Figure 7. Boundary layer statistics averaged over time and span
for the case of the smooth bump. a) Displacement thickness δ ∗ and
b) momentum thickness θ . Lines represent - - Reh = 7500 and -
Reh = 15000.

number increases the shear layers instability moves closer to the
separation point and the vortical structures become smaller. Fig-
ure 7 shows the evolution of the boundary layer over the surface.
The boundary layer thickness, δ , and momentum thicknes, θ , are
plotted versus the arc-length, s, which varies from -1 at the front, 0
at the top, to 1 at the trailing edge. It is clear that as the Reynolds
number increases the boundary layer becomes thiner. However the
separation point as shown in Figure 8 doesn’t change. In both cases
the boundary layer separates at approximately s = −0.07. As a
result the pressure coefficient, Cp, and consequently the drag re-
main constant. As the Reynolds number increases even further (not
shown here), the shear layer instability moves closer to the surface
and the flow reattaches. This is accompanied by a gradual drop in
the drag coefficient (see Figure 5), which represents the onset of the
drag crisis.

Rough surface
For the rough surface the boundary layer transitions earlier.

Figure 9 shows contours of the instantaneous spanwise vorticity on
a spanwise plane passing through the middle of the geometry, for
two Reynolds numbers: Reh = 12000 corresponding to the mini-
mum drag, and Reh = 30000. In both cases the flow is in the post-
critical regime. For the Reh = 12000 case the boundary layer at the
front of the bump remains laminar. Local shear layers form over
individual roughness elements but remain stable. Towards the top
however, the shear layers become unstable giving birth to vortical
structures that populate the near wall flow. These structures en-
ergize the flow and separation is delayed compared to the smooth
case. For the Reh = 30000 small vortical structures are present
very close to the stagnation point at the front indicating that tran-
sition occurs earlier. The flow also separates earlier compared to
the Reh = 12000 case.

We next look on the boundary layer growth over the rough sur-
face. Figure 10 shows profiles of the tangential velocity, Ut , at vari-
ous locations for both Reynolds numbers. The profiles are averaged
over time and the spanwise direction. Up to a distance of 0.9d away
from the surface the averaging includes areas of both solid and fluid
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Figure 8. Plot of a) Cp and b) C f versus stream wise coordinate
for the case of the smooth bump. Lines represent - - Reh = 7500
and - Reh = 15000.
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Figure 9. Contours of the instantaneous span wise vorticity for the
case of the rough bump at a plane passing through the middle of the
bump. a) Re = 12000 and b) Re = 30000
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Figure 10. Profiles of the tangential velocity for rough bump at
different locations: a) s = 0.0, b) s = 0.41 and c) s = 0.62. Lines
represent: —; Reh = 12000, - - - Re = 30000.

pockets. At a distance greater than 0.9d every point is a fluid point.
The profiles reveal that for the higher Reynolds number there is a
momentum deficit in the boundary layer already at s = 0, which is
at the very top of the curved surface (s is a non-dimensional arch-
length ranging from −1 < s < 1 as shown in Figure 11). The mo-
mentum deficit persists further downstream. As a result the bound-
ary layer separates around s = 0.51 for the Re = 30000 case and
around s = 0.83 for the Re = 12000 case. This is a significant delay
in the separation of the boundary layer.

Figure 11 shows the turbulent kinetic energy, q, averaged over
time and the spanwise direction along an arc passing 0.5 units above
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Figure 11. Plot of the average turbulent kinetic energy along an
arc line passing 0.5 above the rough wall. Lines represent: - - -;
Re = 12000, — Re = 30000.
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Figure 12. Plot of a) displacement thickness δ ∗ and b) momentum
thickness θ along the rough bump. Lines represent: —; Reh =

12000, - - - Reh = 30000.

the rough wall. The plot clearly illustrates that as the Reynolds
number increases the transition point moves slightly upstream. For
the Reh = 30000 case the levels of q increase quickly at the front,
while for the Reh = 12000 case the levels of q are negligible at the
stagnation point and become higher near the top. Consequently the
momentum transport across the boundary layer occurs earlier for
Reh = 30000 and the boundary layer thickens faster and separates
earlier. This is clearly reflected in the evolution of the displacement
and momentum thickness shown in Figure 12.

Dimpled surface
For the flow over the dimple surface Figure 13 shows contours

of instantaneous spanwise vorticity at a plane passing through the
middle. The boundary layer is initially laminar and remains at-
tached over the first row of dimples. The flow separates close to
the third row of dimples forming a shear layer that rolls-up and be-
comes unstable. The instability of the shear layer is very similar
to the one observed by Beratlis et al. (2014) for flow over dimpled
flat plates and it has been shown that the spanwise oriented vortices
give birth to hairpin like structures in a very a short distance. As
a result of these vortical structures, high-speed flow is transferred
towards the wall increasing the momentum near the boundary and
delaying separation. As the Reynolds number increases the vortical
structures become smaller.

Velocity profiles at three stations along the dimpled surface are
shown in Figure 14. The velocity is averaged over time and span-
wise direction. Overall the velocity profiles are very similar to each
other although the ones for the higher Reynolds number case appear
to have more momentum near the wall. As a result the separation
point (see Figure 15a), is not affected by the Reynolds number. The
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Figure 13. Contours of the instantaneous span wise vorticity at a
plane passing through the middle of the dimpled bump. a) Reh =

12000 and b) Reh = 30000
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Figure 14. Profiles of the tangential velocity for dimpled bump at
different locations: a) s =−0.26, b) s =−0.03, c) s = 0.38, where
s is a parameter ranging from -1 at the front to 1 at the rear of the
bump. Lines represent: —; Re = 12000, - - - Re = 30000.
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Figure 15. Plots of the ensemble averaged a) skin coefficient C f
normalized by Re0.5 and b) pressure coefficient Cp. Lines represent:
—; Reh = 12000, - - - Reh = 30000.

skin friction coefficient becomes negative near the stagnation point
as the flow separates locally over the dimples. However, global flow
separation occurs at s = 0.6 for Reh = 12000 and at s = 0.61 for
Reh = 30000. The pressure coefficient remains unchanged between
the two Reynolds numbers, which explains why the drag coefficient
remains constant in the post-critical regime.

The turbulent kinetic energy, q, averaged over time and the
spanwise direction is shown in Figure 16, and it is plotted along
an arc passing 0.5 units above the dimpled surface. Overall the q
plots are very similar and it appears that the transition point occurs
at the same location for both Reynolds numbers, namely around
s = −0.5. In particular, the levels of q for the Re = 30000 rise a
little earlier but farther downstream the levels of q for both cases
are in very close agreement with each other. This is a very impor-
tant observation implying that for the dimpled surface the transition
point is very weakly dependent on the Reynolds number. This is
contrary to the case of the rough bump where the transition point is
strongly dependent on the Reynolds number.

Finally the boundary layer displacement and momentum thick-
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Figure 16. Plot of the unsteady turbulent kinetic energy q aver-
aged over time and span wise direction along an arc passing 0.5
units above the dimpled bump. Lines represent: —; Reh = 12000, -
- - Reh = 30000.
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Figure 17. Plot of a) displacement thickness δ ∗ and b) momentum
thickness θ along the dimpled bump. Lines represent: —; Re =

11000, - - - Re = 22000.

ness are shown in Figure 17. The boundary layer grows in an almost
identical way over the first two rows of dimples. As the shear layer
becomes unstable over the third row of dimples the boundary layer
for the lower Reynolds number case grows a little faster. It appears
that with dimples as the Reynolds number increases the boundary
layer becomes a little thinner. This is the similar behavior to what
happens over a smooth bump and the opposite behavior to the one
observed over the rough surface.

CONCLUSION
A series of DNS were performed over a curved boundary with

different types of roughness elements. The geometry and bound-
ary conditions are such that the basic physics of the flow over bluff
bodies are represented. Two type of roughness elements covering
the entire bump were considered: dimples and spherical beads. The
study was motivated in part by experiments performed on bluff bod-
ies and the dramatic effect the type of roughness elements have on
the drag as a function of the Reynolds number. It is shown that the
roughness elements are very efficient in accelerating the drag crisis
and reducing the drag compared to the smooth surface at the same
Reynolds number. The results are in very good qualitative agree-
ment with experiments of the flow past bluff bodies with dimples
and similar roughness.

For the case of the spherical beads the drag is reduced but it
rises very quickly as the Reynolds number increases. The dimples
on the other hand are able to reduce and maintain the drag at low
levels for a large range of Reynolds numbers. A closer look at the
evolution of the boundary layer reveals key differences between the
two types of roughness elements and their effect on the boundary
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layer. For the spherical beads the transition point moves upstream
with increasing Reynolds number. As a result, the boundary layer
grows thicker much earlier and the flow has less momentum to over-
come the adverse pressure gradient. The flow separates earlier with
increasing Reynolds number. For the case of the dimpled bump the
location of the transition point remains almost fixed with Reynolds
number. The boundary layer grows in a very similar fashion and the
separation point remains unchanged.
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