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ABSTRACT
Direct numerical simulations of turbulent flows over rough sur-

faces are conducted to investigate the physics of the transitionally

rough regime. Different roughness sizes are analysed within the

transitional regime, for a given roughness shape. We decompose

the flow into a turbulent, geometry-independent contribution, and

a geometry-induced contribution, whose intensity is modulated by

the overlying turbulence. In the onset of the transitionally rough

regime, the turbulent component remains essentially unmodified

compared to smooth-wall turbulence, and the roughness effects can

be attributed entirely to the geometry-induced fluctuations. As the

roughness size increases further, the turbulent component is also

modified, and the effect of the surface on the flow becomes more

complex.

INTRODUCTION
In industrial applications, roughness usually has an undesirable

impact as it generates additional mixing near the wall, which results

in an increase of drag. In other applications, however, this addi-

tional mixing can be beneficial, for instance enhancing heat transfer.

Research on rough-wall turbulence is vast and dates back to Darcy

(1857). Extensive reviews of the subject can be found in Raupach

et al. (1991), Jiménez (2004) and Flack & Schultz (2010). For tur-

bulent flows, provided that the characteristic size of roughness is

still too small to affect the flow, rough surfaces behave as smooth

walls, in what is known as the hydraulically smooth regime. How-

ever, for a fixed roughness of characteristic size k, as the Reynolds

number increases the value of k+ increases, where the superscript

‘+’ denotes scaling in wall-units. For a sufficiently large Reynolds

number, the roughness begins to affect the turbulent flow as k+ is

no longer negligible. Eventually, k+ becomes large enough for in-

ertial terms to dominate even in the roughness sublayer, which is

the region in which turbulent fluctuations depend predominantly on

the roughness geometry (Schultz & Flack, 2007). The pressure drag

then dominates and the friction becomes independent of viscosity.

The friction coefficient reaches an asymptotic state in which it be-

comes independent of the Reynolds number. This is known as the

fully rough turbulent regime. For values of k+ between the hy-

draulically smooth and the fully rough regimes, the flow is said to

be transitionally rough. This is the regime considered in this work.

Because of the complexity of any real rough geometry, it is de-

sirable to find a simple way to characterise roughness. Nikuradse

(1933) conducted a series of experiments in pipe flows where the

walls were coated with packed sand grains of equal size, with mea-

surements taken for several sand grain sizes. The parameter chosen

to characterise the different cases was the sand grain mean diame-

ter, ks. Hama (1954) found that far from the wall roughness only

modifies the mean velocity profile by a shift ∆U+. In the logarith-

mic region, the shape of the profile and Kármán constant, κ , are

otherwise unaffected,

U+(y+) = κ
−1 logy++5.1−∆U+. (1)

Schlichting (1936) found that k+s could be used to characterise any

flow over roughness. The strategy is then not to consider the ac-

tual roughness size, k+, but instead to find the equivalent sand grain

roughness, k+s , which gives the same ∆U+ as the actual roughness.

Any flow with an equivalent sand roughness of k+s produces the

same ∆U+ as a sand roughness of grain size k+s . In the fully rough

regime, k+s /k+ becomes constant and is only a function of the ge-

ometry. However, in the transitionally rough regime k+s /k+ is vari-

able and depends on the flow also. An alternative parameter is k+s∞
,

which is equal to k+s in the fully rough regime, but maintains a con-

stant ratio k+s∞
/k+ even in the transitional regime (Jiménez, 2004).

As a result, the ratio k+s∞
/k+ depends only on the geometry in all

the regimes, but different geometries exhibit a different ∆U+ for

the same k+s∞
in the transitional regime, as illustrated in figure 2(a).

Still, ∆U+ curves eventually collapse in the fully rough regime.

Starting from k+ ≈ 0, as k+ increases and roughness begins

to affect the viscous sublayer, friction deviates from hydrauli-

cally smooth values, and the flow enters the transitionally rough

regime. Some experimental works pay special attention to this

regime (Flack et al., 2012; Flack & Schultz, 2014). However, one

of the key questions remains unresolved: what mechanism triggers

the departure from the hydraulically smooth regime as k+ increases;

and how to define a threshold for this transition based on the rough-

ness geometry only. One of the main issues is that, while k+s∞
char-

acterises appropriately the fully rough regime for most rough sur-

faces, it appears to not be the correct parameter in the transitionally

rough regime. This was already noticed by Colebrook (1939) as

his results and Nikuradse’s do not match in the mentioned transi-

tional regime. In general, different geometries of roughness lead to

different transitions. Comparing several sizes and combinations of

sand grains, Colebrook & White (1937) proposed this transition is

abrupt in organised geometries, while the presence of a wider range

of roughness sizes makes the transition smoother. This assump-

tion is also supported by more recent experiments, such as those

using uniformly arranged spherical rough elements by Ligrani &

Moffat (1986), in which the transition takes place not only for even

higher values of k+s∞
, compared to Nikuradse’s and Colebrook’s ex-

periments, but also in a sharper manner. Moreover, the discrepancy

is such that Flack & Schultz (2010) report a relatively wide range

of experimental values in which the transition takes place, spanning

between 1.4–15 < k+s < 18–70.

Recent research by Chung et al. (2015) is aiming to find a

methodology to capture the effect of roughness, particularly the

increase in friction and ∆U+, at a minimum cost. They conduct

fully turbulent simulations, but in minimal-span boxes (Jiménez &

Moin, 1991; Flores & Jiménez, 2010) that reduce the computational

requirements. The present project also aims to eventually provide

estimates for ∆U+ at a reduced cost, but removing the need to carry

out turbulent simulations altogether, by capturing the effect of the

geometry with reduced order models.

To produce such models, we aim to gain insight into the

physics triggering the transition from the hydraulically smooth
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Figure 1. Sketch of the roughness geometry over the bottom wall.

regime. We carry out a series of direct numerical simulations

(DNSs) of turbulent channels with rough walls. We study a rough-

ness texture formed by equispaced square posts of side k in a rect-

angular arrangement and a texture period s = 2k, as sketched in

figure 1. Similar geometries have been studied by other authors

(Leonardi et al., 2007; Leonardi & Castro, 2010) although their sim-

ulations mainly explore the fully rough regime. The purpose of our

simulations is to investigate the evolution of turbulent flow fluctu-

ations through the transitionally rough regime. The surface shape

is kept constant throughout the simulations, but the size of the el-

ements measured in wall units is varied from k+ ≈ 6 to k+ ≈ 38,

aiming to span the whole regime. The parameters for the simula-

tions are summarised in table 1. We aim to decompose the fluctu-

ation into turbulent and roughness-induced contributions, with the

purpose of isolating the effect of the roughness geometry.

The numerical experiments are conducted in a turbulent pe-

riodic channel with rough texture on the top and bottom walls.

The streamwise, wall-normal and spanwise coordinates are x, y

and z, with u, v and w the corresponding components of the ve-

locity. The numerical method is described in Abderrahaman-Elena

& Garcı́a-Mayoral (2016). The channel half-height, δ , is mea-

sured from the roughness tips, the length is Lx = 2πδ and the width

Lz = πδ . In order to solve the flow around the roughness elements,

the grid resolution is increased near and within the roughness re-

gion, ∆+
xw

= ∆+
zw

≈ 1-2, and ∆y+min ≈ 0.31.

The friction Reynolds, Reτ ≈ 185, is computed using δ and the

friction velocity uτ obtained by extrapolating the total shear to an ef-

fective channel height δ ′. This height is set so that u2
τ =−δ ′∂ p/∂x

(Garcı́a-Mayoral & Jiménez, 2011b; Chung et al., 2015), which is

the relationship that would hold for a smooth channel at δ . The vir-

tual origin calculated from the DNS and the Stokes approximation

are shown in figure 2(c).

GEOMETRY-INDUCED FLUCTUATIONS
In the range of k+ studied, our geometry displays conventional

k-roughness behaviour (Jiménez, 2004), i.e. friction increases with

k+ and the mean velocity profile is shifted downwards, as shown in

figure 2(b), increasing drag. In order to quantify this shift on the ve-

locity profile and also be able to establish a comparison with other

surfaces, we have included in figure 2(a) the results for the rough-

ness function, ∆U+, versus k+s∞
for the geometry considered, which

satisfies ks∞
/k ≈ 0.5. As k+s∞

collapses the fully rough regime to a

single asymptote, the variations in the transitional regime for differ-

ent surfaces can be compared. The roughness function of our cases

is also compared to the results of Colebrook & White (1937), Niku-

radse (1933), and Ligrani & Moffat (1986). In Colebrook & White

(1937), Colebrook (1939), and Nikuradse (1933) the transition is

smooth and begins at low values of k+s∞
. In our case, the transi-

tional regime resembles more closely that of the packed spheres of

Ligrani & Moffat (1986), evolving rapidly from low to high values

of ∆U+. This is in agreement with the observation by Colebrook

(1939) that regular roughness departs from the hydraulically smooth

regime more gradually than regular roughness.

Table 1. Parameters of the simulations. s+ is the post spacing

in both the streamwise and spanwise directions. The number of

collocation points in the fine grid near the roughness are Nxw
and

Nzw
along the streamwise and spanwise directions respectively.

Case k+ s+ ∆U+ Reτ Nxw Nzw

0C − − − 184.5 192 192

6C 6.1 12.1 0.63 184.9 1152 576

9C 9.0 18.0 1.07 183.1 768 384

12C 12.0 24.0 1.90 183.6 1152 576

18C 17.8 35.5 3.81 181.0 768 384

24C 23.5 47.0 5.29 179.4 576 288

36C 37.9 75.8 7.37 193.0 768 384

To understand how the flow is modified by the presence of

roughness and produces the changes described above, we focus our

analysis on the velocity fluctuations. The effect of roughness is

limited to the vicinity of the wall, and decays rapidly away from

it. Figure 3 portrays an instantaneous realization of the streamwise

velocity for case 9C at y+ ≈ 1.3 above the roughness peaks, close

enough to the wall to observe the effect of the roughness elements.

The figure shows that the fluctuating velocity signal has two distinct

contributions. The first is the typical background signal character-

istic of smooth-wall turbulence, which consists of streamwise elon-

gated streaks of high and low u-velocity, of length 500−1000 wall

units and width 50−100 wall units (Kim et al., 1971; Smith & Met-

zler, 1983). This contribution remains essentially unmodified, at

least for k+ < 15 (or ∆U+ < 3). The second contribution is directly

caused by the presence of the roughness elements, and consists of

alternating regions of relatively low velocity right over the protrud-

ing elements, and relatively high velocities over the valleys between

elements. This signal is attached to the roughness geometry, and is

therefore not advected in time as the turbulent contribution. It is

instead essentially repeated periodically in a lattice of streamwise

and spanwise periodicity s, so that its value depends only on the

relative position within each periodic unit, that is, the coordinates x̃

and z̃, with values between 0 and s, and the wall normal coordinate

y. The lengthscales of this roughness contribution would scale with

k+, and its intensity would also increase with the roughness size.

To characterise these two contributions, a typical decomposi-

tion is

u(x,y,z, t) = U(y)+u
′
T(x,y,z, t)+uR(x̃,y, z̃), (2)

where uR is be the spatially fluctuating, time-independent compo-

nent due to the roughness, and uT the remaining turbulent signal,

which includes the mean velocity U(y) and the fluctuating com-

ponent u′T . The geometry-coherent signal uR can be obtained by

averaging over time and over the roughness lattice,

uR(x̃,y, z̃) = 〈u(x,y,z, t)−U(y)〉t,NR
, (3)

where NR is the number of roughness elements in the simulation

domain.

The above decomposition is analogous to that of Reynolds &

Hussain (1972) for coherent waves in turbulence, and is widely used

in flows over complex surfaces (Choi et al., 1993; Jiménez et al.,
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Figure 2. (a) Roughness function ∆U+; , correlation for Colebrook results (Jiménez, 2004); , correlation of sand grain roughness

(Nikuradse, 1933); , correlation of sphere roughness (Ligrani & Moffat, 1986); • present DNSs.. (b) Mean velocity profiles measured

from y+0 = 1/8k+ . Thick black line, case 0C. (c) Protrusion height, y+o . Solid line, solution of Stokes problem, with the slope dy+0 /dk+ ≈ 1/8.

Dashed line, linear regression for cases 6C to 24C. Blue to red cases 6C through 36C of table 1

2001; Garcı́a-Mayoral & Jiménez, 2011b; Jelly et al., 2014; Seo

et al., 2015). However, this decomposition fails to completely sep-

arate the two contributions, since when uR is subtracted from u, uT

still carries the signature of roughness. The problem is illustrated in

figure 3, which portrays the different components at a given instant

and y ≈ 1.3 above the roughness crest, for case 9C. For this case k+

is still small enough for the rough and turbulent components to have

clearly separate wavelengths, so that uT can be obtained simply by

filtering out small wavelengths. Panels 3(a) and (b) show the full

velocity signal u and the filtered turbulent contribution uT , and il-

lustrate the starting hypothesis that the velocity signal is made up of

a turbulent signal, analogous to that over smooth walls, plus a small-

intensity, small-wavelength, roughness-coherent signal. However,

when uT is subtracted from u, as shown in panel 3(d), the result is

not uR, as in figure 3(c). However, the subtraction resembles closely

the modulation in amplitude of uR by the turbulent contribution uT ,

uR =
uT

U
uR. (4)

Note that, on average, uT /U is equal to 1.

Taking the above discussion into account and expanding it to

the other velocity components, we propose the following decompo-

sition

u = uT +uR = uT +
uT

U
uR +

wT

U
uR⊥

, (5)

v = vT +vR = vT +
uT

U
vR +

wT

U
vR⊥

, (6)

w = wT +wR = wT +
uT

U
wR +

wT

U
wR⊥

. (7)

The second term on the right-hand-side captures the effect of the

flow around the roughness elements, driven by the local stream-

wise turbulent contribution uT . Similarly, the last term on the right-

hand-side, the one including the subscript ‘⊥’, accounts for the flow

around the roughness elements when driven by the local spanwise

turbulent contribution wT .

For large k+, the length-scales of the turbulent and the

roughness-induced components become comparable, and the two

contributions cannot then be simply separated filtering out the

roughness component. However, it is always possible to obtain

uR from equation (3) and the turbulent contributions can then be

obtained algebraically from equations (5)-(7). As an example, fig-

ure 4 shows the agreement between u− uT and uR, v− vT and vR,

and w−wT and wR, where the T -subscript magnitudes have been

obtained by filtering out the small scales and the R-subscript mag-

nitudes have been obtained algebraically. The comparisons on the

bottom panels show how neglecting the amplitude modulation of uR

could lead to underpredicting its contribution to the total intensity

of the fluctuations.

The present modulation of the near-wall, roughness-induced

flow by the overlying turbulent flow is similar to the modulation of

buffer-layer turbulence by outer-layer large structures (Mathis et al.,

2009; Talluru et al., 2014; Zhang & Chernyshenko, 2016), except

for the difference in the scales involved and the lack of modulation

in wavelength. In the present study, the modulating signal is actu-

ally the buffer-layer turbulence. The low Reynolds number of our

DNSs prevents the development of large-scale turbulence, but if this

was present it could be expected to modulate the buffer-layer flow.

In turn, the total turbulent velocity above each roughness element

would modulate the local uR.

The modulation of uR by the overlying turbulence is also con-

nected to the concept of protrusion height in riblets (Luchini et al.,

1991; Garcı́a-Mayoral & Jiménez, 2011a). For vanishing riblet

spacing, the flow near each texture element is produced by the

quasi-uniform shear induced by the turbulent eddy just above. In

the scale of the texture, this eddy can be represented as quasi-

homogeneous and quasi-steady (Zhang & Chernyshenko, 2016).

The overlying turbulent velocity therefore sets the scale for the local

velocity within the riblet grooves, just like in our case the overlying

uT sets the scale for the local uR.

In the limit of vanishingly small texture, the roughness-induced

component is essentially the result of a quasi-homogeneous, quasi-

steady flow. We explore this idea in order to predict this contribution

without carrying out full DNSs. We find that uR is not accurately

represented by the Stokes solution, not even for the smallest rough-

ness size. However, the solution obtained for a shear-driven, lam-

inar simulation matching k+ seems to display a fairly good agree-

ment with the roughness-induced contribution, even well beyond

the sizes by which we would expect it to start failing, as it appears

to be a good approximation at least up to k+ ≈ 18, as shown in

figure 5.

The above discussion is only valid for vanishingly small rough-

ness, when uT modulates uR but is itself unaffected by the presence

of roughness. However, as the roughness size increases and be-

comes comparable to the turbulent eddies, this assumption ceases to

hold. For the geometry considered in this paper, we would expect

this to happen for s+ ≈ 15−20, when the spacing between rough-
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ness elements becomes comparable to the typical diameter of the

quasi-streamwise vortices that are characteristic of near-wall turbu-

lence (Kim et al., 1987). The validity of the assumption that the

turbulent contribution remains essentially unaffected by the pres-

ence of roughness can be checked in figure 6, which compiles the

rms of the different contributions of 〈u′〉, 〈v′〉 and 〈w′〉, as a func-

tion of y+. In figure 6, the two rightmost columns of panels show

how the phase-averaged and the modulated roughness-induced con-

tributions increase gradually with k+ from the smallest roughness,

while significant changes in the turbulent components only appear
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for k+ > 15, or its equivalent roughness function ∆U+ > 3. This im-

plies that the onset of roughness effects, that is, the beginning of the

transitionally rough regime, can occur for roughness sizes at which

the buffer-layer turbulence is essentially unaffected, so that it may

be possible to estimate the changes in the flow independently of the

turbulence. It also shows that the phase-average and the modulated

roughness-induced contributions are of the same order of magnitude

and comparable to the turbulent contribution near the wall. Neither

contribution should therefore be neglected when estimating the total

fluctuations.
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CONCLUSIONS AND FUTURE WORK

We have focussed the present work in the transitionally rough

regime of turbulent flows over rough walls. As a starting bench-

mark case, we have selected a surface made up of evenly spaced,

uniform cubes, and we have conducted a series of DNSs in which

we have varied the size of the cubes, k+, while maintaining the sur-

face shape, so that the whole transitionally rough regime could be

studied. We have hypothesised that the fluctuating flow could be

decomposed into a smooth-wall-like turbulent contribution and a

roughness-induced one. We have checked this assumption for the

fluctuating velocities. For the smaller values of k+, the decomposi-

tion is valid, except that the roughness-induced component is mod-

ulated in amplitude by the turbulent one. For somewhat larger k+,

the turbulent component differs from that over smooth walls, but in

the onset of the transitionally rough regime the turbulent component

remains essentially smooth-like, and all the changes in the flow can

then be attributed to the geometry-induced component. This result

suggests that it may be possible to predict the onset of roughness ef-

fects without considering the interaction of the roughness geometry

with the turbulence, but further studies are required to verify this.
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gineering and Physical Sciences Research Council through grant

number EP/M506485/1.
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