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ABSTRACT
Our original dynamic LES subgrid-scale (SGS) model was ob-

tained on the basis of a realizable stochastic model for turbulent
velocities. However, realizablity of PDF equations does not neces-
sarily ensure the full realizability of a SGS model. By analyzing the
structure of the SGS stress tensor we have derived a condition for
the realizibility of the SGS stress tensor which makes our original
dynamic DGS model fully realizable. The corresponding dynamic
bounds are applicable to any SGS model which has an eddy viscos-
ity structure. It is found that stress-realizablility ensures stability,
whereas a model that is not stress-realizable can become unstable.
Extensive investigations are carried out for studying the reason of
instabilities in dynamic SGS models. It is found that instabilities
in dynamic SGS models are produced by imbalances originated via
large gradients of the standard deviations of dynamic model param-
eters.

INTRODUCTION
One of the most interesting features developed in large eddy

simulation is the dynamic subgrid-scale procedure. It is a general
method for calculation of model constants as a function of time and
space as the simulation progresses. This helps us to avoid any treat-
ment of model constant (e.g., damping or wall modeling) near the
wall boundaries. Although dynamic SGS models are extremely at-
tractive, but they suffer from instabilities. The principal reason that
why the SGS models have such an unstable property has not yet
been fully clarified.

The first step to avoid instability could be developing a realiz-
able SGS model. Heinz developed a dynamic SGS model based on
realizable stochastic model for turbulent velocities (Heinz, 2007).
In applying this realizable model for different flows we found that
the model can suffer from instability for some flows. For stabi-
lization of the model we used to clip some negative values of CS.
We found that the realizibility of PDF equations does not necessar-
ily ensure the realizability of SGS stress tensor. In this paper we
introduced a method for stabilization of any SGS model that uses
the Boussinesq hypothesis. By examining the structure of the SGS
stress tensor we derived a condition for realizibility of SGS stress
tensor. By applying this condition to our original model we made
our model strongly stable for wide range of CFL number. Then, ex-
tensive investigations are performed for discovering the instability
reason in a dynamic SGS model.

The paper is organized as following. First, we will consider

the realizability of model from two approaches; realizability of PDF
equations and realizibility of stress tensor. Second, we will derive a
condition for realizibility of stress tensor. Third, we will described
the flow considered for testing our method. Next, We will perform
extensive stability analysis. Finally, the conclusions are summa-
rized.

MODELING APPROACH

Realizability via Stochastic Analysis
The LES model is based on a realizable stochastic model

for turbulent velocities proposed by Heinz (Heinz, 2003a,b, 2007,
2008; Heinz & Gopalan, 2012; Gopalan et al., 2013). This model
implies the exact but unclosed filtered Navier-Stokes equations.

Realizability via Stress Structure
Let us consider now realizability conditions that arise from the

structure of the SGS stress tensor. Before doing so, we would like
to refer to two facts. First, in line with the consideration of incom-
pressible flow in this paper we will present this analysis for incom-
pressible flow. However, the extension to compressible flow is sim-
ple: it just needs to replace S̃i j by its deviatoric component S̃d

i j , and,

correspondingly, |S̃| by |S̃d |. Second, the analysis presented in this
subsection does not make any other assumption than the structure of
τi j given above for the SGS stress. In particular, we do not assume
any specific structure of the turbulent viscosity νt , this means our
analysis results are applicable to all SGS stress models that use the
SGS stress given above.

The SGS stress tensor τi j is a positive semi-definite matrix if it
satisfies

τi j ≥ 0 f or i = j, (1)

τ2
i j ≤ τiiτ j j f or i ̸= j, (2)

det(τi j)≥ 0. (3)

We can use the first two conditions to obtain the following three
realizability requirements for the SGS stress tensor,

τ11 + τ22 + τ33 = 2k ≥ 0, (4)

τ2
12 + τ2

13 + τ2
23 ≤ τ11τ22 + τ11τ33 + τ22τ33, (5)
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det(τi j)≥ 0. (6)

The SGS stress tensor is assumed to have an eddy viscosity
structure given above. We introduce the nondimensional turbulent
viscosity

ν∗
t =

√
3

2
νt |S̃|

k
. (7)

Then, it can be shown that all three realizability conditions are sat-
isfied if |ν∗

t | ≤ 0.47917 = 23/48.

LES Models Considered
The closure of kinetic energy equation still requires the defini-

tion of the SGS viscosity νt . The combination of νt = kτL/3 with
τL = 2(1 − c0)∆k−1/2, see above, implies the deterministic SGS
model

νt =
2(1− c0)

3
k1/2∆. (8)

An equilibrium version of this SGS model can be obtained in the
following way. According to kinetic energy equation, we equate the
last two terms, this means we assume that the production is balanced
by the dissipation. This implies

k1/2 =

√
2(1− c0)

3
∆|S̃|. (9)

By using this expression we obtain an equilibrium deterministic
SGS stress model given by

νt =

[
2(1− c0)

3

]3/2
∆2|S̃|. (10)

The use of c0 = 0.86 implies νt = 0.093k1/2∆ and νt = 0.172∆2|S|
for the non-equilibrium and equilibrium SGS stress models. These
settings correspond to standard models applied in several simula-
tions. However, to avoid the need for any such SGS model parame-
ter settings, dynamic versions of these LES models will be consid-
ered in the following.

Our first model considered, which will be referred to as
noneqilibrium LDM (LDMK), applies the expression νt =CSk1/2∆,
where CS is obtained via

CS =−
Ld

i jM ji

MklMlk
. (11)

Here, Ld
i j refers to the deviatoric component of the Leonard stress

Li j = ŨiŨ j − Ũi Ũ j (the overbar refers to the test filter operation),
and Mi j is given by

Mi j = 2∆T
√

kT S̃i j, (12)

which involves the test-filter turbulent kinetic energy kT = Lnn/2
and filter width on the test-filter level ∆T = 2∆.

Our second model considered is the original dynamic
Smagorinsky model (DSM), which does not involve any averag-
ing or clipping of dynamic model coefficients. This model applies
an equilibrium expression for k in the SGS viscosity νt leading to
νt =CS∆2|S̃|, where CS is obtained via

CS =−
Ld

i jHi j

HmnHmn
, (13)

where the expression Hi j is given by

Hi j = 2
(

∆T
)2

|S̃ |S̃i j −2∆2|S̃ |S̃i j . (14)

Combination of LES Models with Bounds
According to the realizability condition |ν∗

t | ≤ 23/48 derived
in the previous subsection, we find the following CS realizability
condition for the LDMK is given by

|CS| ≤
23

24
√

3
k1/2

∆|S̃|
, (15)

and the realizability condition for the DSM model is given by

|CS| ≤
23

24
√

3
k

∆2|S̃|2
. (16)

The problem with using Eq. (16) in conjunction with the DSM
is that k is not available by using these methods. One of the options
is to approximate k by Yoshizawa’s expression (Yoshizawa, 1986),
k =CI∆2|S̃|2, where CI is given by CI = kT /((∆T )2| ¯̃S|2). Here CI is
obtained by the approximation Lkk/2 = kT =CI(∆T )2|S̃|2. Similar
method is used by (Moin et al., 1991). We found that this formula
is just an approximation for k and it is not a good approximation
everywhere; therefor we would use a coefficient Ck in the following
bound formula

|CS| ≤
23Ck

24
√

3
kT

(∆T )2| ¯̃S|2
, (17)

as realizibility bound for DSM. The use of DSM in conjunction with
Eq. (17), where Ck has to be determined from simulations, will be
referred to as DSMS.

COMPUTATIONAL DETAILS
We considered separated flow over two-dimensional hills. This

flow configuration creates a variety of relevant flow features such as
separation, recirculation, and natural reattachment. It follows the
numerical work of Mellen et al. (2000). This geometry has been
used for various numerical studies and served as a benchmark for
testing the performance of various turbulence models.

Figure 1 shows the computational domain applied in our sim-
ulations. The size of the computational domain is Lx = 9h, Ly =
3.035h, and Lz = 4.5h in streamwise (x), wall normal (y), and span-
wise (z) directions, respectively, where h is the height of the hill.
The hill crest is located at (x,y)/h = (0,1). The Reynolds num-
ber Re = Ubh/ν is Re = 37,000 based on the hill height and bulk
velocity above the hill crest at x = 0. At the bottom and top, the
channel is constrained by solid walls. No-slip and impermeabil-
ity boundary conditions are used at these walls. Periodic boundary
conditions are employed in streamwise and spanwise directions. In

Figure 1: Computational domain of two-dimensional hill flow
simulations: the reference curvilinear grid is shown.

recently published paper (Mokhtarpoor et al., 2016) we investigated
the same flow using pure LES and also unified RANS-LES mod-
els. We also studied grid effect for both models for grids ranging
from 60 K to 20 M cells. In present study, our aim is to analyze
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the stability of dynamic models by investigating the effect of dif-
ferent parameters. Therefore we will use a reference grid for all of
our studies. From our previous studies we found that the grid of
Nx ×Ny ×Nz = 128× 80× 48 with 500 K cells is a pretty logical
mesh for present study.

Our computations are initialized by a uniform bulk velocity Ub
except in cases in which we wanted to calculate correlation func-
tions where we restarted our calculations with stationary solutions.

1 RESULTS A: LDMK
Although the original LDMK SGS model proposed by (Heinz,

2007) was based on a realizable stochastic model for turbulent ve-
locities, but it does not necessarily ensure the realizibility of stress
tensor. In applying the original LDMK model for different flows we
found that for some flows the model suffers from instability if we
do not use any clipping for negative values of the model constant,
Cs. For stabilization of the model, we used to clip some negative
values of Cs in the original LDMK model and referred to this model
LDMK-CC (LDMK with constant clipping). This model will be
discussed later in details.

By applying the realizability condition for structure of SGS
stress tensor we made the new LDMK model fully realizable. To ex-
amine the realizibilty of the dynamic coefficient, Cs, we have mon-
itored time histories of Cs using the new LDMK model. Figure 2
shows the time histories of Cs along with its realizibility bounds for
two probe points during 30 flow-through times (FTTs). The loca-
tion of probe point P1 is in the shear in top of the first hill and P2
is in downstream of P1 in middle of two hills. The red and blue
circles in Fig. 2 indicate the times at which Cs values hit the upper
and lower realizibilty bounds, respectively. In the probe point P1,
we found that in 30 FTTs (corresponding to 150,000 iterations) in
average 2 out 100 iterations Cs value hits the upper (positive) realiz-
iblity bound, and about the same Cs value hits the lower (negative)
realizibility bound. In the probe point P2, the frequency of hitting
is about 4 out of 1000 iterations in average for both lower and upper
bounds. This shows that the original LDMK model is almost a real-
izable model which is implied by its PDF-realizability but it is not
fully realizable model, which sometimes for some flows give rise to
instability. By using the SGS stress tensor realizibility conditions
we have made the model fully realizable. Next, we study the effect
of simulation time step in realizibility of the model.

For studying the effectiveness of these bounds on the stability
of dynamic model we used another dynamic LDMK version which
applies bounds that are 1.2, 1.5, and 2 times bigger than the reg-
ular bounds (see Eq. (15)). We refer to these model LDMK-1.2B,
LDMK-1.5B and LDMK-2B, respectively. Table 1 summarizes the
stability analysis results for LDMK and other extended bound ver-
sions. We called a model stable when it does not become unstable
for 100 FTTs. We see that LDMK is strongly stable for wide range
of time steps between ∆t = 10−3–10−2 which corresponds CFL
numbers ranging between 0.1–0.9. But, the LDMK-1.2B is only
stable for time steps ∆t = 0.001 and 0.002 and the LDMK-1.5B
and LDMK-2B are unstable even for small CFL number (small ∆t).
It can be concluded that: first, by applying realizability bound we
made the LDMK model fully realizable; second, a model that is not
stress-realizable can become unstable.

2 RESULTS B: STABILITY ANALYSIS
Dynamic model procedure is a method for determining the

SGS model constant which makes the method attractive especially
for flows in complex geometries where it is difficult to calibrate
model constants. But, this procedure usually suffers from instabil-
ity without using either averaging or clipping methods. It is known
that by clipping of negative model constants which is not a favor-
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Figure 2: Time histories of Cs and its realizibility bounds in
LDMK simulations for the last 30 flow-through times at two
different probe points P1 (upper plot) and P2 (lower plot).
The red and blue circles indicate the times at which Cs values
hit the upper and lower realizibilty bounds, respectively. The
time step is ∆t = 0.002.

able method we can avoid instability but we don’t know the ac-
tual reason of how the model constants can cause the instability.
In preceding section, we observed that even a PDF realizable dy-
namic model can locally produce model constants that is nonphysi-
cal (non-realizable). Number of occurrence of these local nonphys-
ical events can be cause of the instability. Another potential reason
could be the correlation of non-physical model constant. This can
be happen in two different ways; when a SGS model produces a
nonphysical model constant in a specific time and space this non-
physical event can be elongated in that specific point for a long time
or it can be spread in space. Lund et al. (1993) claimed that in-
stability of dynamic SGS model is mostly related to the time inter-
val over which the negative model coefficient remains correlated.
Another possibility is that when a SGS model produces nonphysi-
cal large positive and negative model constants, at the same time it
brings about large gradients which numerical model can not handle
it and give rise to instability. In some dynamic models positive to-
tal viscosity have been used for stabilization of models. Negative
total viscosity in diffusion terms of momentum or turbulent kinetic
energy can be a reason of instability.

In the following, we will study the possible instability rea-
sons in details. For investigating any possible reason, we will com-
pare two stable and unstable models. Since LDMK-CC model with
big negative clipping (e.g., Cclip = −0.2) is very unstable model
in which instability happens in less than 5 FTTs we could clearly
see the differences of stable and unstable cases. But we couldn’t
calculate the correlation functions in unstable LDMK-CC models
because we needed reasonable samples for calculation of correla-
tion function. Hence, only for studying the effect of correlations we
will use unstable LDMK-2B model that instability happens after 56
FTTs.
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Table 1: Stability analysis of LDMK and its extended bound versions at different time steps.

Simulation ∆t = 0.001 ∆t = 0.002 ∆t = 0.004 ∆t = 0.008 ∆t = 0.01

LDMK Stable Stable Stable Stable Stable

LDMK −1.2B Stable Stable Unstable Unstable Unstable

LDMK −1.5B Unstable Unstable Unstable Unstable Unstable

LDMK −2B Unstable Unstable Unstable Unstable Unstable

Effect of Correlations
One of the possible instability reasons could be the correlation

of non-physical (non-realizable) model constants. This correlation
can be in time and space. Lund et al. (1993) claimed that instabil-
ity of dynamic SGS model is mainly due to the elongated negative
model constants. In this study, we aimed to re-examine their conclu-
sion. It is obvious that we should calculate the correlation function
in a region where the occurrence of negative Cs is high. The time
correlation function is calculated in two points, one of them is P3,
located in the center of the bubble where we have largest occurrence
of negative Cs and another point, P4, is located in shear layer where
we have large gradients of flow field quantities.

The temporal auto-correlation function of Cs, R(τ), at specific
time t0 is calculated by

R(τ) =
⟨C′

s(t0)C
′
s(t0 + τ)⟩

⟨C′
s(t0)C

′
s(t0)⟩

. (18)

Here C
′
s = Cs −⟨Cs⟩ is the fluctuation of Cs at specific time. Tem-

poral correlation functions are calculated for a stable LDMK and an
unstable LDMK-2B models. Since for the calculation of correlation
functions we needed reasonable number of independent samples,
we had to use a unstable model which instability occurs after rela-
tively long time. For LDMK-2B model (with ∆t = 0.002 s) instabil-
ity occurs after 56 FTTs which corresponds to about 560 seconds.
Independent samples are taken in every successive 1.4 seconds, be-
cause the correlation time for the points P3 and P4 are 0.6s and 1.4s
respectively. The total number of samples used in time correlation
calculations are 400×40 = 16,000 samples.

Figure 3 shows the Temporal correlation function for LDMK
and LDMK-2B. For both models correlation time for point P3 is
0.6s and for point P4 is 1.4s. It shows that the stable and unstable
models have same correlation of Cs and hence correlation of Cs can
not be the cause of instability.

Frequencies of occurrence of local non-realizable
events

It was shown that even a dynamic SGS model which is based
on realizable stochastic model rarely produces non-physical (non-
realizable) model constants. Now the question is how this non-
realizable events possibly could give rise to instability. One imme-
diate answer could be the number of occurrence of this non-physical
events. It is found that, although non-realizible events of unstable
model is much more than the stable model but this can not be the
reason of instability. If we look at the probability of non-realizable
events of the stable LDMK model with time step ∆t = 0.008 (not
shown here) we found that its non-realizable events are more than
the unstable LDMK-CC model with time step ∆t = 0.002. There-
fore the frequencies of occurrence of non-realizable events itself can
not be the reason of instability.

Imbalances originated by large fluctuations of Cs

Next, we will investigate the effect of Cs fluctuations on insta-
bility. Standard deviation is considered here as a quantity that re-
flects the characteristic of fluctuations. We compared the standard
deviation of stable and unstable models. It is found that in con-
trast to stable models which have approximately constant standard
deviation in time or at most involve only smooth transition of stan-
dard deviations, unstable models experience big temporal jumps in
standard deviations. Big jumps in time result in large gradients of
standard deviation in space which can give rise to instability of the
numerical model. In the following we will discuss it in details.

For comparing the characteristic of fluctuations for stable and
unstable models, two stable LDMK-CC (Cclip = −0.02,−0.05)
models and one unstable LDMK-CC (Cclip =−0.2) model are con-
sidered. Figure 4 shows the time histories and standard deviation of
Cs at probe point P3 from start to 3 FTTs (corresponds to 15,000 it-
erations). It should be noted that all three simulations are initialized
with the same initial condition. In calculation of standard deviation,
the mean could be computed in different ways. Since our purpose
was to discover the reason of instability, we had to find out what
happens close to the time of instability. Therefore, the standard de-
viation of Cs is calculated by moving time averaging method. The
moving time window of 0.4 FTT (corresponds to 2,000 iterations)
is used. In other words, the standard deviation at time t is calculated
from the last 2,000 iterations. First, we compare two stable LDMK-
CC models. Standard deviations becomes approximately stationary
after 2.0 FTTs (corresponds to 10,000 iterations) for this two mod-
els. Standard deviation of LDMK-CC models with clipping con-
stants of −0.02 and −0.05 are about 0.017 and 0.023, respectively
at the time of 2.6 FTTs. If we look at the fluctuations in LDMK-CC
(Cclip =−0.05) between 2.2−2.6 we can find that in 0.4 FTT (2000
iterations) there are about 800 iterations that the absolute values of
Cs are bigger than 0.02; 450 iterations in negative and 350 in posi-
tive fluctuations. Therefore, in LDMK-CC (Cclip =−0.05), ampli-
tudes of 40% (800/2000 = 0.4) of fluctuations are bigger than 0.02.
But, LDMK-CC (Cclip =−0.02) has about 220 iterations that their
absolute values are bigger than 0.02 (all in positive fluctuations). It
means that only 10% (200/2000 = 0.10) of fluctuations are bigger
than 0.02. Hence, LDMK-CC (Cclip =−0.05) have 30% more large
fluctuations than LDMK-CC (Cclip =−0.02); this gave rise to 35%
standard deviation differences for these two models. Now, we com-
pare two LDMK-CC (Cclip = −0.05,−0.2) models. It can be seen
that LDMK-CC (Cclip = −0.2) becomes unstable after 2.6 FTTs.
We see that standard deviation of Cs for unstable model is about
the same of LDMK-CC (Cclip = −0.05) before 2.2 FTTs . Before
this time, the number of iterations that their amplitudes are bigger
than 0.05 are only 400 (out of 11,000 iterations) for LDMK-CC
(Cclip = −0.2). This value for LDMK-CC (Cclip = −0.05) is 240
iterations. Therefore the number of large fluctuation in two models
are not that different to make observable standard deviation differ-
ences till flow-through time 2.2. We see that after this time, series
of big fluctuations with maximum amplitudes of 0.25 and 0.22 oc-
curred. Since the clipping is not that restrict for this model, large
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Figure 3: Temporal correlation function for LDMK and LDMK-2B at probe points P3 (left plot) and P4 (right plot). The time
step ∆t = 0.002.
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Figure 4: Time histories and standard deviation of Cs for LDMK-CC with three different clipping constants at probe point P3.
Standard deviations are shown with dashed lines with the same color. The time step for both simulation is ∆t = 0.002.

positive fluctuations are followed with large negative fluctuations
as well. Between flow through time of 2.2 and 2.6 (which includes
2000 iterations) 300 iterations occur which their absolute ampli-
tudes are bigger than 0.05. It should be noted till flow through times
of 2.2 there is no fluctuation bigger than 0.08. But between 2.2−2.6
there are about 160 events that absolute values of Cs are bigger than
0.08. The value of the standard deviation for unstable model reaches
to 0.039 before the crash. We see that in contrast to stable models
that have approximately constant standard deviations, the unstable
model faced with about 70% increase in standard deviation of Cs
between 2.2−2.6 FTTs which ended up with the model instability.
In addition, we see that unlike two stable models which standard
deviations differences caused by large amount hitting of the bound
in LDMK-CC (Cclip =−0.02), in the later case standard deviations
differences caused by very large fluctuations (fluctuations that can
be five times of 0.05). If we had more restrict clipping for unstable
model, the fluctuations would be controlled after large positive fluc-
tuations. For observing the instability reason in entire flow field, we
look at the contour plots of standard deviation. Figure 5 (a, c and
e) compares the contour plots of standard deviation of Cs for three
models. Here again, it is shown that by decreasing the clipping
constant, standard deviation of Cs increases. This increase is very
significant in the unstable LDMK-CC model (Cclip = −0.2). The
most important feature of the unstable LDMK-CC model is that the
large fluctuations which are shown by red structures are not only
increased but also spread in all the flow field. This is in consistent
with Fig. 4 that shows instability occurs when standard deviation
faces with abrupt changes in time. Because large jumps in time
brings about large jumps in space as well. This causes the regions

of high fluctuation get closer to regions that have relatively much
smaller fluctuations (green and light blue) this can give rise to high
gradients of magnitude of fluctuations in space. Figure 5 (b, d and
f) compares the gradient of standard deviation of Cs in y direction
for the same three models. It can be seen that in both stable LDMK-
CC models large gradients of standard deviations (gradients of large
fluctuations) happen near the upper and lower wall where the tran-
sition of very small to medium fluctuations happens. Note that the
positive and negative values in upper and lower walls are related to
direction of y axis and wall normal directions for the two walls. In
contrast to the stable models, in the unstable model large gradients
of fluctuations spreads in the regions that small to very large fluctua-
tions of model constant have to be exist. It seems that the instability
occurs in a model that produces non-physical (non-realizable) big
Cs values that results in big fluctuation in time in all of the region.
This cause regions with very small fluctuations get close to regions
with very large fluctuations which produces large gradients of fluc-
tuations (large imbalances) in space that can no longer be handled
by numerical method and finally end up with unstable model.

CONCLUSIONS
The original PDF-realizable LDMK model was not fully realiz-

able. This could cause instabilities in simulation of some flows. We
used to apply clipping method for the stabilization of model. Then
we found that the realizibility of PDF equations does not necessarily
ensure the realizability of SGS stress tensor. By analyzing the struc-
ture of SGS stress tensor we have derived a condition for realizibil-
ity of SGS stress tensor which made the LDMK model fully realiz-
able. Stability analysis performed on a high Reynolds number sep-
arated flow shows that the new fully realizible LES model, LDMK,
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Figure 5: Contour plots of standard deviation of Cs (left plots) and gradient of standard deviation in y direction, ∂ ⟨C′
sC

′
s⟩1/2/∂y,

for two stable LDMK-CC (Cclip = −0.02 and –0.05) and one unstable LDMK-CC (Cclip = −0.2) models. The time step for all
simulations is ∆t = 0.002.

is always stable for wide range of CFL number. It is found that the
stress-realizibility condition ensures the stability of the model and
without that the model can face with instability. The new stabiliza-
tion method which was based on the realizibility of structure of SGS
stress tensor can be easily extended to the other SGS models which
are based on Boussinesq hypothesis. By applying the similar condi-
tion we made the original DSM model stable without any averaging.
We performed extensive investigation on instability reasons origi-
nated from dynamic SGS models. For this end, we investigated the
possible reasons such as: a) the frequencies of occurrence of local
non-physical (non-realizable) events, b) effect of any correlation of
model constant, c) imbalances originated by large fluctuations. We
found that in contrast to Lund et al. (1993), instability does not oc-
cur due to long correlation of negative model constant. It occurs
due to large gradients of standard deviation that happens in entire
flow field.
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