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Abstract
The decay of homogeneous isotropic turbulence in

a variable viscosity fluid is analyzed by means of highly
resolved direct numerical simulations. An important
question that is addressed by the present work is how
the dissipation mechanism is changed by fluctuations
of the viscosity. From the budget equation of the tur-
bulent energy it is shown that the mean dissipation is
nearly unchanged by variable viscosity effects. This re-
sult is explained by a negative correlation between the
local viscosity and the local velocity gradients. How-
ever, the dissipation is a highly fluctuating quantity
with a strong level of intermittency. From a statis-
tical analysis it is shown that turbulent flows with
variable viscosity are characterized by an enhanced
level of small-scale intermittency, which results in the
presence of smaller length scales and a modified tur-
bulent mixing. The effect of variable viscosity on the
turbulent cascade is analyzed by two-point statistics.

1 Introduction
Turbulent flows encountered in engineering and

environmental applications are very often character-
ized by a spatial or temporal variation of viscosity,
which results from variations of temperature or species
composition. A prominent example from geophysical
flows is the convection in the earth’s mantle, where
the viscosity decreases with temperature. An other
important case is the turbulent mixing in combustion
systems, where a concentration dependent viscosity
may affect the efficiency of turbulent mixing.

Fully developed turbulence is characterized by
a large range of length scales, varying from the so-
called integral length scale lt, at which large velocity
fluctuations occur on average, down to the smallest
scale, the so-called Kolmogorov or dissipation scale η,
at which turbulent fluctuations are dissipated due to
viscosity. According to Kolmogorov’s first hypothesis
(Kolmogorov (1941b,a)), the smallest scales should
reveal universal properties, and should depend only
on two parameters, namely the viscosity ν and the
mean energy dissipation rate 〈ε〉. Kolmogorov’s sec-
ond hypothesis postulates that larger scales of the flow
decouple from the smaller scales and should become
independent of viscosity, provided that the Reynolds
number is sufficiently high. However, numerous exper-

imental and numerical studies have indicated that Kol-
mogorov’s traditional view is a crude assumption and
that large and small scale quantities are strongly cou-
pled, cf. Sreenivasan & Antonia (1997) and Warhaft
(2000). The situation is even more complex for turbu-
lent mixing with local viscosity variations. One has to
cope with a turbulence-scalar interaction which is two-
fold: the fluid motions affect the scalar mixing, while
mixing induced viscosity changes affect the dynamics
of the velocity field.

Viscosity represents the most important property
of turbulent flows, and the impact of its variation on
the dynamics should be addressed in detail. Taylor
(1935) postulated that the mean energy dissipation
rate depends only on the large scale velocity urms and
length scale lt, i.e. 〈ε〉 ∝ u3

rms/lt, and hence becomes
independent of viscosity, provided that the Reynolds
number is sufficiently large. However, the dissipation
is a highly fluctuating quantity with large but rare
excursions from its mean value. In the literature this
phenomenon is called internal intermittency, cf. Batch-
elor & Townsend (1949). The physical mechanism
behind internal intermittency is still unresolved, and
it is not known whether viscosity gradients enhance or
reduce internal intermittency. Internal intermittency
is present for both the velocity and scalar fields. The
consequence for turbulent mixing is evident: large fluc-
tuations of the scalar dissipation correspond to large
values of the local scalar gradient, which enhances the
mixing efficiency.

The paper is structured as follows. Section 2
presents the governing equations and the direct nu-
merical simulations on which the analysis is based.
Section 3 introduces the budget equation of the tur-
bulent energy and discusses the impact of variable
viscosity on the dissipation mechanism of turbulence.
Section 4 addresses the impact of variable viscosity
on the Kolmogorov length scale. A two-point analysis
is presented in section 5 and we conclude this study
in section 6.

2 Direct numerical simulations and govern-
ing equations
The present work studies the effect of local vis-

cosity variations on small-scale turbulence. The anal-
ysis is based on highly resolved direct numerical sim-
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ulations (DNS) of decaying homogeneous isotropic
turbulence. The DNS solves the three-dimensional
incompressible Navier-Stokes equations,

∂uj
∂t

+ ui
∂uj
∂xi

= − ∂p

∂xj
+ ∂

∂xi
(2νsij) , (1)

with the continuity equation

∂ui
∂xi

= 0 , (2)

in a triply periodic box with size 2π by a pseudo-
spectral method, see Gauding et al. (2015) for a de-
tailed description of the algorithm. Einstein’s sum-
mation convention is used, which implies summation
over indices appearing twice. In eqs. (1) and (2), the
velocity field is denoted by uj , p is the pressure (for
simplicity the density 1/ρ is incorporated in p), ν is
the local viscosity, and sij is the strain-rate tensor,
defined as

sij = 1
2

(
∂uj
∂xi

+ ∂ui
∂xj

)
. (3)

The local viscosity field ν(x, t) is determined by
solving an advection-diffusion equation for a scalar
field φ(x, t), i.e.

∂φ

∂t
+ ui

∂φ

∂xi
= D

∂2φ

∂x2
i

. (4)

The scalar φ is statistically isotropic and homogeneous,
bounded, i.e. −1 ≤ φ(x, t) ≤ 1, and has zero mean,
i.e. 〈φ〉 = 0. Following Gréa et al. (2014), the local
viscosity ν(x, t) is linked through a linear relation to
the scalar field,

ν(x, t) = 〈ν〉+ ν′(x, t) = 〈ν〉+ cφ(x, t) , (5)

where 〈ν〉 denotes the uniform mean viscosity, ν′(x, t)
denotes the fluctuating viscosity field, and c is a pos-
itive constant with c < 〈ν〉 to ensure positivity of
ν(x, t). A linear relation is convenient because it
keeps the mean viscosity 〈ν〉 unchanged during de-
cay. The constant c is obtained from the initial
minimum and maximum values of the viscosity by
c = (νmax − νmin)/2, which implies that the initial
scalar variance 〈φ2〉 equals unity. In the following, we
use φ as a surrogate for ν. The molecular diffusivity
D in eq. (4) is assumed to be constant and equals the
mean viscosity 〈ν〉 = (νmin + νmax)/2. As a conse-
quence the Schmidt number, defined as Sc = ν/D, is
a fluctuating quantity.

The initialization of the DNS is similar to that of
Ishida et al. (2006). The initial velocity field obeys a
broad-band spectrum of the type

E(κ, t = 0) ∝ κ4 exp(−2(κ/κp)2) , (6)

where κ denotes the wave-number. The peak of the
initial spectrum is located at κp = 12 to inject en-
ergy at sufficiently large length scale, and to keep
the initial integral length scale small compared to
the confinement by the computational domain. The
initial scalar energy spectrum is proportional to the
velocity spectrum, and the initial scalar field is not
correlated with the velocity field, i.e. 〈uiφ〉 = 0.
The initialization guarantees that both velocity and
scalar field are statistically homogeneous and isotropic.
The initial Reynolds number, defined with the mean
viscosity as Re0 = urms/(κp〈ν〉), equals 43, where
urms =

√
〈u2
i 〉/3 is the root mean square of the veloc-

ity field.
The governing equations are temporally inte-

grated by a low-storage stability preserving third order
Runge-Kutta method. The viscous term containing
the mean viscosity 〈ν〉 is treated exactly by an inte-
grating factor technique. The fluctuating part of the
viscous term is non-linear and computed in real space
by a sixth-order compact method, cf. Lele (1992). To
remove aliasing effects a standard isotropic truncation
method in combination with a random phase-shift
technique is employed. This allows us to keep all
wave-numbers κ <

√
2N/3. The grid resolution of the

DNS is N3 = 10243, which adequately resolves the
smallest scales for all cases.

In this work we will compare DNS with constant
and variable viscosity. The baseline case has a con-
stant and spatially uniform viscosity of 〈ν〉 = 0.006.
Additionally, two cases with variable viscosity are
considered. These cases have the same mean vis-
cosity 〈ν〉 as the baseline case, but an initial vis-
cosity ratio Rν = νmax/νmin that equals 5 and 15,
respectively. The initial viscosity distribution is bi-
modal with an initial normalized viscosity variance of
〈ν′2〉/〈ν〉2 = (νmax − νmin)2/(νmax + νmin)2. At later
times, the viscosity distribution function is smoothed
due to turbulent mixing and the temporal decay of
the viscosity variance 〈ν′2〉.

3 Budget of the turbulent kinetic energy
An important question addressed by the present

work is how the dissipation mechanism of turbulence
is changed by variable viscosity, and whether turbu-
lent flows with variable viscosity dissipate more or less
energy as flows with constant viscosity. For decaying
homogeneous isotropic turbulence the transport equa-
tion for the mean turbulent energy 〈k〉 = 〈uiui〉/2
reads

d〈k〉
dt = 〈 ∂ν

∂xi

∂

∂xj
(uiuj)〉 − 〈ε〉VV . (7)

The first term on the right-hand side describes the
dissipation of turbulent energy due to viscosity gradi-
ents. This term is negative, but DNS showed that it is
negligible compared to the second term, which is the
mean dissipation 〈ε〉VV = 〈ν (∂ui/∂xj)2〉 of turbulent
energy. The mean dissipation is defined as the corre-
lation between the local viscosity ν and the square of
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the local velocity gradient tensor

Aij = ∂ui
∂xj

. (8)

〈ε〉VV can be further decomposed by virtue of eq. (5)
as

〈ε〉VV = 〈ν〉〈
(
∂ui
∂uj

)2

〉︸ ︷︷ ︸
εCV

+ 〈ν′
(
∂ui
∂uj

)2

〉︸ ︷︷ ︸
εp

. (9)

The first term on the right hand side of (9) denotes
the classical dissipation for flows with constant vis-
cosity, while the second term accounts for dissipation
due to fluctuations of the viscosity. Figure 1 shows
the temporal evolution of the terms appearing in (9)
for the three cases under consideration. The mean
dissipation 〈ε〉VV displays an initial transient before
turning into a decaying state, and is only slightly
affected by the viscosity ratio Rν . During the tran-
sient period the increase of 〈ε〉VV is delayed for the
two cases with variable viscosity. During the early
phase of the decay, 〈ε〉VV of the variable viscosity
cases exceeds the constant viscosity case, indicating
an enhanced turbulent mixing process. At later times,
when turbulent mixing advances and the amplitude
of viscosity fluctuations decreases, no difference be-
tween the different cases can be discerned. Figure 2
shows the temporal evolution of the turbulent energy
〈k〉. A slightly reduced initial decay of the turbulent
energy is visible for the cases with variable viscosity,
which is consistent with the temporal evolution of the
dissipation 〈ε〉VV. These results confirm the trends
previously reported by Taguelmimt et al. (2016b,a) in
DNS studies of temporally evolving mixing layers.

In a next step, the effect of variable viscosity on
the terms of eq. (9) is analyzed in more detail. Fig-
ure 1 shows that different from 〈ε〉VV, both 〈ε〉CV
and 〈ε〉p strongly depend on the viscosity ratio Rν .
The dissipation 〈ε〉CV, which is built with the mean
viscosity 〈ν〉, is positive and increases with increasing
viscosity ratio Rν and clearly exceeds the mean dissi-
pation 〈ε〉VV. As the mean viscosity 〈ν〉 is the same
for all cases, this indicates that turbulent flows with
variable viscosity are characterized by larger velocity
gradients 〈A2

ij〉. In the balance of eq. (9) the strong de-
pendence of 〈ε〉CV on Rν is compensated by the term
〈ε〉p formed with the fluctuating part of the viscosity
ν′. Initially 〈ε〉p is zero because viscosity fluctuations
and velocity gradients are uncorrelated. During the
transient period 〈ε〉p becomes negative and tends to
zero again for larger times. Due to the balance be-
tween the positive 〈ε〉CV and the negative 〈ε〉p, the
mean dissipation 〈ε〉VV is only slightly depending on
Rν .

Let us now analyze the link between ν and A2
ij by

probability density functions (pdf). Both dissipation
and velocity gradients are characterized by large fluc-
tuations, which exceed the respective mean value by
orders of magnitude. This phenomenon is known as in-
ternal intermittency. Figure 3 illustrates (for the time
t/τ = 9.3) the normalized pdfs of A2

ij and νA2
ij condi-

tioned on φ ≥ 0 and φ < 0, respectively (note that ν
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Figure 1. Temporal evolution of the terms appearing
in eq. (9), i.e. the mean dissipation 〈ε〉VV = 〈νA2

ij〉
(solid lines), the dissipation formed with the mean
viscosity 〈ε〉CV = 〈ν〉〈A2

ij〉 (dashed-dotted lines) and
the fluctuating part 〈ε〉p = 〈ν′A2

ij〉 (dashed lines).
The latter term is not shown for Rν = 1, as it is
zero by definition. The time is normalized by τ =
1/(κpurms,o). The reference dissipation is chosen as
εref = 〈ε〉(t = 0)
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Figure 2. Temporal evolution of the mean turbulent
kinetic energy 〈k〉 for the three viscosity ratios Rν .
The time is normalized by τ = 1/(κpurms,0), and
kref = 〈k〉(t = 0).

is linearly related to φ by eq. (5)). The pdf of A2
ij has

stretched exponential tails, where the tail in the low
viscosity regime is significantly pronounced compared
to the high viscosity regime. These tails originate
from strong rare events which are non-universal and
generally depend on Reynolds number (or viscosity).
As large velocity gradients occur at low viscosity (and
vice versa), cf. fig. 4, the normalized conditional pdf
of the dissipation reveals a notably reduced depen-
dence on viscosity, which signifies that statistics of
the dissipation 〈ε〉VV become independent of viscosity.
Note that a negative correlation between A2

ij and ν
is a necessary condition for the independence of the
dissipation from viscosity.

Statistics of the dissipation are now studied by
the conditional average 〈ε|φ〉, which provides further
information about the correlation between dissipation
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Figure 3. Normalized marginal pdf of ε = νA2
ij (top)

and a = A2
ij (bottom), conditioned on positive and

negative values of φ. Note that ν is linearly related to φ
by eq. (5). The curves are normalized by the individual
mean values 〈ε〉 and 〈a〉 = 〈A2

ij〉, respectively. The
figure shows the case Rν = 15 at t/τ = 9.3.

Figure 4. Joint pdf P (A2
ij ,φ) indicates the presence

of large velocity gradients especially in the low vis-
cosity regime for φ < 0. The figure shows the case
Rν = 15 at t/τ = 9.3.

and viscosity. Figure 5 reveals that the conditional
dissipation 〈ε|φ〉 is asymmetric for Rν > 1, where
during the early phase of transition (t/τ = 3.1) large
dissipation values occur on average for φ > 0. At
t/τ = 6.2 the dissipation decays, but the decay rate
is more rapidly in the high-viscosity region for φ > 0

−1 −0.5 0 0.5 1
0

1

2
t/τ = 3.1

t/τ = 6.2

t/τ = 9.3

φ

〈ε
|φ
〉/
ε r

ef

Rν = 1 Rν = 5 Rν = 15

Figure 5. Mean dissipation 〈ε|φ〉 conditioned on the
scalar φ for three different times. The reference dissi-
pation is defined as εref = u3

rms,0κp.

and, hence, the asymmetry is inverted and the highest
dissipation level is observed in the low viscosity regime
for φ < 0. At later times (t/τ = 9.3) the conditional
dissipation 〈ε|φ〉 decays further and becomes nearly
independent of viscosity. Additionally, the value of
〈ε|φ〉 is virtually independent of Rν . These findings
support the validity of Taylor’s postulate for turbulent
flows with variable viscosity.

4 Impact of viscosity fluctuations on the
Kolmogorov length scale
Kolmogorov’s theory postulates the existence of

a dissipative cut-off scale where the turbulent cascade
ends. This length scale is known as the Kolmogorov
length scale η,

η =
(
ν3

ε

)1/4

, (10)

which is itself a fluctuating quantity. High values of
the dissipation occur around thin sheet or tube-like re-
gions with length scales smaller than the Kolmogorov
length scale η0 = (〈ν〉3/〈ε〉)1/4 built with the mean
values of the viscosity and the dissipation. The nor-
malized probability density function (pdf) of the local
Kolmogorov length scale is displayed in fig. 6 for all
cases for t/τ = 6.2. The left tail of the pdf, which is
dominated by large intermittent fluctuations of the
dissipation, reveals a strong dependence on the viscos-
ity ratio Rν . The cases with variable viscosity show a
clear tendency to establish significantly smaller cut-
off scales than the case with Rν = 1. On the other
hand, the right tail of the pdf is nearly unaffected by
viscosity fluctuations. These findings indicate that
particularly the strong intermittent events of turbu-
lence are enhanced by the fluctuations of viscosity,
resulting in the presence of smaller length scales and
a modified turbulent mixing. A further justification
of these results is provided by the joint pdf of the
velocity gradients and the viscosity P (A2

ij ,φ), where
the largest velocity gradients A2

ij occur in the regime
of low viscosity, see fig. 4. This signifies that the
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Figure 6. Normalized probability density function of
the Kolmogorov length scale η = (ν3/ε)1/4 at t/τ =
6.2. The curves are normalized by η = (〈ν〉3/〈ε〉)1/4

from the constant viscosity case.
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Figure 7. Normalized energy spectra E(κ) for t/τ =
6.2. For normalization the mean dissipation 〈ε〉 and
Kolmogorov length scale for the constant viscosity
case are used.

smallest length scales occur as expected in regions of
low viscosity.

5 Two-point statistics
In the previous sections we have shown that fluc-

tuations of the viscosity have a strong impact on the
small scales of turbulence while statistics at the large
scales are virtually unchanged. Energy spectra are
considered to examine the scale-dependent effect of
viscosity fluctuations on the turbulent cascade. Fig-
ure 7 shows the normalized energy spectra for all cases
for t/τ = 6.2. A difference between the constant and
variable viscosity cases is clearly seen at the small
scales, where the spectra for the variable viscosity
cases extend towards large wave-numbers. This dif-
ference has a negligible effect on the mean turbulent
energy but a considerable effect on the mean dissipa-
tion, cf. figs. 1 and 2. For later times, t/τ > 10, the
energy spectra for all cases collapse (not shown here)
as the dissipation and the turbulent energy become
independent of Rν .

A central quantity of turbulence is the velocity
increment ∆u = u(x+r)−u(x), defined at two points
separated by a distance r, whose moments are known

as structure functions. Scale-dependent properties can
be analyzed by structure functions, as they capture
not only local but also non-local phenomena, which
are inherent to turbulent flows. Kolmogorov’s first
similarity hypothesis states that for locally isotropic
turbulence, statistics of velocity increments are deter-
mined uniquely by 〈ν〉 and 〈ε〉CV. In other words, in
the limit r → 0, the second order structure function
〈(∆u)2〉 can be developed in a Taylor series, i.e.

〈(∆u)2〉 = 〈
(
∂u

∂x

)2
〉r2 = 1

15
〈ε〉CV

〈ν〉 r2 , (11)

and is uniquely determined by 〈ν〉 and 〈ε〉CV. Equa-
tion (11) is an analytic solution of structure functions
in the dissipative range. In the derivation of eq. (11)
it is assumed without loss of generality that the sep-
aration vector r is aligned with the x axis. In the
second equality the factor 1/15 is obtained by relating
〈ε〉CV to 〈(∂u/∂x)2〉 due to isotropy. In the large scale
limit for r →∞, the second order structure function
becomes independent of r and tends to its one-point
limit, which equals 2〈u2〉. Figure 8 shows the velocity
structure function 〈(∆u)2〉 for different times for the
constant and variable viscosity cases under consider-
ation. The structure functions are compensated by
the dissipative range scaling yielding a plateau for
r → 0. A dependence of the structure function on the
viscosity ratio is observed in the dissipative range for
the time steps t/τ = 2.0 and t/τ = 3.1, which is in
agreement with the dependence of 〈A2

ij〉 on Rν . At
later times or at larger scales, 〈(∆u)2〉 is independent
of Rν , which is in agreement with the independence
of 〈k〉 on Rν .

Now, we consider the viscosity-velocity structure
function, defined as

Sν = 〈(ν(x + r) + ν(x))(u(r + r)− u(x))2〉 , (12)

which appears in the diffusive term of the generalized
transport equation for 〈(∆u)2〉 in variable viscosity
turbulence, cf. Voivenel et al. (2016) and Danaila et al.
(2017). Equation (12) can be developed in a Taylor-
series for r → 0, yielding

Sν = 2〈ν
(
∂u

∂x

)2
〉r2 = 2

15 〈ε〉VVr
2 , (13)

where the second equality on the right-hand side ex-
ploits isotropy of the velocity field. In the large scale
limit r →∞, Sν becomes independent of r and tends
to 4〈νu2〉. Under the assumption that the viscosity is
statistically independent from the turbulent energy,
4〈νu2〉 simplifies to 4〈ν〉〈u2〉. The viscosity-velocity
structure functions are shown in fig. 8. Different to
〈(∆u)2〉, the viscosity-velocity structure functions col-
lapse for all time steps under consideration over all
scales r independently of Rν . This result has two
implications. Firstly, at the small scales it confirms
Taylor’s postulate. Secondly, it underlines that large-
scale statistics are not affected by fluctuations of the
viscosity and confirms the independence between u2

and ν.
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Figure 8. Compensated second order velocity struc-
ture function (top) and compensated mixed viscosity-
velocity structure function (bottom) for different times
t/τ (from top to bottom 2.0, 3.1, 6.2, 9.3) and viscosity
ratios Rν .

6 Conclusion and discussion
The present study focuses on the analysis of small-

scale turbulence with variable viscosity by means of
direct numerical simulations. The main results are:
(i) The effect of variable viscosity is virtually negligi-
ble on the mean turbulent energy 〈k〉 and the mean
dissipation 〈ε〉VV. This finding confirms the validity
of Taylor’s postulate.
(ii) Turbulent flows with variable viscosity reveal sig-
nificantly enhanced velocity gradients in regions of
low viscosity, which results in the presence of smaller
length scales and an increased level of small-scale in-
termittency.
(iii) It was shown that fluctuations of the viscosity af-
fect the smallest scales of the flow but keep the larger
scales unchanged.
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