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Linné FLOW Centre
KTH Mechanics

Stockholm, Sweden
pschlatt@mech.kth.se

Hassan M. Nagib

Department of MMAE
Illinois Institute of Technology

Chicago, IL 60616
nagib@iit.edu

ABSTRACT
In the present study we perform direct numerical simulations

(DNSs) of fully-developed turbulent square ducts with round cor-
ners at Reτ,c ' 180 and 360, and rectangular ducts of width-to-
height ratios of 3 and 5 with rounded side walls at Reτ,c ' 180. The
friction Reynolds number Reτ,c is based on the centerplane friction
velocity and the half-height of the duct. The results are compared
with the corresponding duct cases with 90◦ corners. We focus on
the influence of the rounding on the mean cross-stream secondary
flow and on further characterizing the mechanisms that produce it.
Unexpectedly, the rounded ducts exhibit higher cross-flow rates and
their secondary vortices relocate near the transition point between
the straight and curved walls. This behavior is associated to the
statistically preferential arrangement of sweeping events entering
through the curved wall, which trigger an ejection on the adjacent
straight wall. We have yet to find effective modifications to the cor-
ners or transverse ends of a rectangular duct that would render better
rigorous modeling of two-dimensional channel flows.

INTRODUCTION
One of the most noticeable characteristics of turbulent flow

through enclosed straight ducts with rectangular cross-section is
the presence of secondary flows near the corners. These secondary
flows, which are entirely due to turbulence, are known as Prandtl’s
secondary motions of the second kind and describe the in-plane
(y− z) mean cross-flow perpendicular to the streamwise direction x.
The magnitude of the cross-flow is relatively weak compared with
the streamwise velocity but strong enough to significantly affect the
turbulent flow statistics (Bradshaw, 1987).

In square ducts, the cross-flow consists of two counter-rotating
vortices per duct quadrant that drive the cross-flow into the cor-
ner through the bisector and out of it through the buffer-layer re-
gion in the wall-tangent direction. Therefore, the mean in-plane
streamfuction Ψ is anti-symmetrically distributed with respect to
the corner bisector. The underlying physical mechanisms that gen-
erate the Prandtl’s secondary flow of the second kind in square
ducts have been addressed by many authors. The secondary flow
is associated with the secondary Reynolds shear-stress vw and the
anisotropy of the cross-stream deviatoric Reynolds-stress v2−w2;
e.g., see Moinuddin et al. (2004). According to Perkins (1970), the
deviations due to the secondary normal stress operate like a source
term in the mean streamwise vorticity Ωx transport equation (1),
and the second term in equation (2) acts as a transport term. In
these equations, v and w are the wall-normal and spanwise fluctu-
ating velocity components and their equivalents in capital letters
refer to their mean quantities. The wall-tangent velocity fluctu-
ations become more constrained as the corner is approached, in-
creasing the source term in the equation. Near the corner, Huser &
Biringen (1993) associated the Reynolds-shear stress components
uv and uw with the transfer of momentum between the streamwise
and the cross-stream normal stresses due to the inhomogeneous in-

teraction between bursting events arising from the horizontal and
vertical walls. The authors also related the nonzero secondary shear
stress vw to the transport of momentum from the spanwise veloc-
ity fluctuations along the horizontal wall to the vertical fluctuations
along the vertical wall and vice versa. Later, Pinelli et al. (2010)
showed that high-speed streaks have a statistically preferential loca-
tion in the near-corner region, thereby transferring momentum from
the streamwise to the cross-stream fluctuations in this region. The
authors also found that a low-speed streak is preferentially located
at each flank of the high-speed streak on each of the perpendicular
walls. They related the mean streamwise vorticity distribution to the
preferred buffer-layer location of the quasi-streamwise vortices as-
sociated with the inhomogeneously distributed streaks. Therefore,
this mean quantity should scale in viscous units. However, their
study showed that the mean in-plane stream function scales in outer
units. This behavior rather agrees with the non-local nature of the
Poisson equation (3), which relates both quantities, and highlights
the multiscale character of the secondary flow.
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Prandtl’s secondary motions of the second kind were studied
by Vinuesa et al. (2014, 2015b) in rectangular ducts with varying
aspect ratio AR (defined as the duct total width divided by its total
height) using a similar numerical approach to the one presented in
this study. The same authors performed direct numerical simula-
tions (DNSs) at Reτ,c ' 180, which is the friction Reynolds number
based on the centerplane friction velocity and the half-height of the
duct, for AR between 1 and 14.4, and at Reτ,c ' 360 for AR = 1 and
3. They compared their results with the spanwise-periodic channel
by Jiménez et al. (2004) and concluded that aspect ratios larger than
10 are required to obtain channel-like conditions in the centerplane
region.

In the present study, we use a rounding radius (defined as the
radius of the corner divided by the half-height of the duct) of r = 0.5
to smooth the 90◦ corners of the square duct and of r = 1 to sub-
stitute the straight side walls of the rectangular ducts by a half-
pipe. Doing so, we expect to minimize interaction between burst-
ing events and homogenize the distribution of the velocity streaks
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along the wall. Note that in square ducts the r = 1 case corresponds
to the round pipe, where there are no corner effects and the flow
statistics are two-dimensional due to azimuthal symmetry. DNSs of
turbulent pipe flow at various Reynolds numbers were performed
by El Khoury et al. (2013) using a similar numerical approach.
We compare the cross-flow distribution in the curved ducts with
the corresponding 90◦-corner cases by Vinuesa et al. (2014, 2015b)
and analyze its impact on the mean streamwise velocity and the
wall-shear stress distribution. Finally, we study the primary and
secondary shear-stress components of the rotated Reynolds-stress
tensor to gain more insight into the mechanisms that produce the
secondary flow.

NUMERICAL SIMULATIONS
DNSs of the turbulent duct cases, which are summarized in Ta-

ble 1, have been performed using the numerical code Nek5000, de-
veloped by Fischer et al. (2008) at Argonne National Laboratory.
The code utilizes the spectral-element method (SEM), originally
proposed by Patera (1984), to spatially discretize the incompress-
ible Navier–Stokes equations subject to the corresponding boundary
conditions. The cases under consideration have been computed us-
ing periodic boundary conditions in the homogeneous streamwise
direction and no-slip boundary conditions at the walls. The SEM
provides the geometrical flexibility we need to discretize the round
corners using finite elements with rounded edges, while preserving
the high-order accuracy of spectral methods, which is required to
properly resolve the scale disparity of turbulent flows. Therefore,
the mesh has been designed to satisfy the standard resolution cri-
teria for DNS with at least three and fourteen grid-points located
below y+ = 1 and 10, respectively. The superscript ‘+’ denotes in-
ner scaling in terms of the friction velocity uτ =

√
τw/ρ (where τw

is the wall-shear stress and ρ the fluid density). Similarly, the max-
imum and minimum spacing in viscous units between the spectral
nodes of the largest elements is ∆x

+ ' (4,20) in the streamwise di-
rection and ∆y,z

+ ' (2,10) in the vertical/spanwise directions. Note
that within each element the velocity grid points follow the Gauss–
Lobatto–Legendre (GLL) distribution since the basis functions cor-
respond to Lagrange interpolants of order N for velocity and N−2
for pressure. In all of the cases presented in Table 1 we use a poly-
nomial order of N = 11.

Table 1. Summary of the cases considered in the present study.
The case notation consists of the nominal Reτ,c, the AR of the duct
and the letter r if r 6= 0.

Case AR Reτ,c r Lx/h (taUb/h)

180AR1 1 178 0 25 7148

180AR1r 1 183 0.5 50 595

360AR1 1 356 0 25 3652

360AR1r 1 350 0.5 25 560

180AR3 3 178 0 25 5964

180AR3r 3 191 1 25 1350

180AR5 5 177 0 25 3744

180AR5r 5 178 1 25 1400

Regarding the temporal discretization, the nonlinear terms are
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Figure 1. Cross-sectional averaged kinetic energy of the sec-
ondary flow 〈Kyz〉 as a function of the averaging time ta for the duct
cases under study. Solid and dashed lines are use to indicate cases
with sharp and rounded corners, respectively.

treated explicitly by third-order extrapolation (EXT3) and the vis-
cous terms are treated implicitly by a third-order backward differ-
entiation scheme (BDF3). High-order splitting is used to decouple
pressure and velocity. One Helmholtz problem is solved for each
velocity component using conjugate gradients. After that, the pres-
sure is obtained by solving a consistent Poisson problem through
generalized minimum residuals (GMRES). Nek5000 is written in
Fortran77/C and employs the message-passing interface (MPI) for
parallelism. The code is highly parallelizable allowing one to dis-
tribute the problem to thousands of processors in order to accomo-
date the high computational cost associated with large-scale direct
numerical simulations.

The averaging periods used to calculate the time averaged
statistics are shown in Table 1 expressed in convective time units.
However, the mean flow statistics are computed by averaging not
only in time but also in the homogeneous streamwise direction.
Therefore, to facilitate comparison between the 180AR1r duct (with
Lx = 50h) and the rest of the ducts (with Lx = 25h) we will consider
the effective averaging time to be proportional to the streamwise
length of the duct. The issues of initial transient identification and
required averaging times are discussed by Vinuesa et al. (2016) for
the 90◦-corner duct flows. Despite the lower averaging periods of
the rounded duct cases, these are long enough to obtain a nearly con-
verged cross-sectional averaged kinetic energy of the mean cross-
flow 〈Kyz〉= 1/A

∫
a KdA (where A is the cross-sectional area of the

duct), as shown in Figure 1. The kinetic energy of secondary flow is
defined as K = 1/2

(
V 2 +W 2), where V and W are the vertical and

spanwise velocity components averaged in the streamwise direction
and in time for an averaging period of ta. Finally, the converged
mean flow statistics must be symmetric with respect to the various
symmetry planes. Thus, the effective averaging time is further in-
creased by exploiting the flow symmetries of the averaged velocity
components, i.e., the 8 and 4 symmetries present in the square and
rectangular ducts, respectively.

CHARACTERIZATION OF THE SECONDARY
CROSS-FLOW

As discussed by Vinuesa et al. (2015a), the strength of the
cross-flow can be characterized by its mean kinetic energy 〈Kyz〉.
In the rectangular cases, the asymptotic value of 〈Kyz〉, shown in
Figure 1, is slightly lower in the duct with rounded side walls.
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Figure 2. Color plots showing the streamwise mean velocity
scaled with the bulk velocity U/Ub (7 contours with increments
of 0.2). (Left half of each panel) mean streamfunction Ψ/(Ubh)
(8 countours with increments of 0.5×10−3) and (right half of each
panel) mean streamwise vorticity (Ωxh)/Ub (12 contours with in-
crements of 0.1) scaled with the half-height of the duct and the bulk
velocity. The red and black lines correspond to clockwise and an-
ticlockwise sense of rotation, respectively. The value of Reτ,c from
each case is indicated in the corresponding panels.

However, in the square duct cases, the rounding radius leads to a
slightly higher value of 〈Kyz〉 at Reτ,c ' 180 and to a similar value at
Reτ,c ' 360. Therefore, the results show that the impact of the cor-
ner and side wall geometry on the magnitude of the mean cross-flow
is less significant than originally expected, since the secondary flow
is not present in round pipes (r = 1) and channels, where 〈Kyz〉= 0.
Nevertheless, the impact of the corner geometry on the cross-flow
distribution is very important, as will be discussed in the following
sections.

Square duct with round corners
The streamfunction of the mean cross-flow Ψ, shown on the

left side of each panel in Figure 2 for the square duct cases, is use-
ful to gain insight into the behavior of the secondary flow. The
figure shows that the rounding radius displaces the distribution of
Ψ away from the corner towards centerplane of the duct, with its
peaks located near the end of the straight walls. Consequently, the
separation between the streamlines of the cross-flow increases near
the corner bisector (z = y) and decreases near the centerplane in-
dicating that the cross-flow magnitude attenuates and amplifies in
these regions, respectively. The cross-flow redistribution causes the
isolines of the mean streamwise velocity U , also shown in Figure 2,
to become more distorted near the centerplane as more low-velocity
fluid from the near-wall region is being convected by the increased
wall-normal centerplane velocity into the core of the duct. This re-
duced mean velocity near the wall actually leads to a reduced wall-
shear stress value in the centerplane. On the other hand, the isolines
of U near the corner bisector become almost parallel to the curved
wall.

Another interesting effect of the rounding radius is the reduced
influence of the Reynolds number on the distribution of Ψ in the
duct with round corners, as can be seen by comparing the left and
right sides of Figure 2. This effect is also present in the maximum
value of the cross-stream function Ψmax, which is associated with
the total cross-flow rate. This value decreases from 2.3× 10−3 to
2.0×10−3 in the 90◦-corner ducts as Reτ,c is increased from 180 to
360 but remains constant at Ψmax ' 2.5×10−3 in the round corner
ducts. As the Reynolds number increases, the isolines of Ψ stretch
farther into the 90◦ corner. Note that this corner type produces a

Figure 3. Color plots showing the streamwise mean velocity
scaled with the bulk velocity U/Ub (7 contours with increments
of 0.2). (Left half of each panel) mean streamfunction Ψ/(Ubh)
(12 countours with increments of 0.75× 10−3) and (right half of
each panel) mean streamwise vorticity (Ωxh)/Ub (12 contours with
increments of 0.1) scaled with the half-height of the duct and the
bulk velocity. The red and black lines correspond to clockwise and
anticlockwise sense of rotation, respectively.

region of low wall-shear stress near the corner due to the bound-
ary layer overlapping of the adjacent walls. This region becomes
smaller as the Reynolds number increases allowing for further in-
teraction between bursting events arising from each of the walls,
as discussed by Huser & Biringen (1993), thereby increasing the
value of Ψ in the near-corner region. However, Pinelli et al. (2010)
showed that the peaks of Ψ scale in outer units highlighting the role
of the larger scales in the production of cross-flow and its multiscale
nature. Therefore, the rounding radius may be filtering the inhomo-
geneous interaction of the smallest structures with spanwise length
of order λs � r, while enhancing the inhomogeneous interaction
between the largest and more energetic scales, where r ≤ λl ≤ h.
Note that raising Re increases the separation between the different
scales, such that λs/r→ 0 and λl/r remains constant.

Pinelli et al. (2010) also showed that the streamwise vorticity
distribution in 90◦-corner ducts is determined by the preferential
arrangement of the buffer-layer structures, thus, this quantity must
scale in viscous units. The streamwise vorticity Ωx, shown on the
right side of each panel in Figure 2, is characterized by the presence
of four relative extrema with alternating sense of rotation and anti-
symmetric distribution with respect to the corner bisector. The sense
of rotation of Ωx changes in the buffer-layer, at y+ ' 10, where the
cross-flow is maximum and parallel to the wall. Therefore, the dis-
tribution of Ωx has an inner peak below the buffer-layer, where Ωx
reaches its maximum value at the wall, and a counter-rotating outer
peak is established above it. Our results show that this behavior
is common in both the round and the 90◦-corner ducts. However,
the rounding radius has an important effect on the magnitude and
distribution of Ωx, which becomes more apparent with increasing
Reynolds numbers. In the 90◦-corner ducts, increasing the friction
Reynolds number from Reτ,c ' 180 to Reτ,c ' 360 causes the max-
imum value of the outer-scaled streamwise vorticity to rise from
0.75 at z ' 0.65h to 1.6 at z ' 0.83h. Therefore, the magnitude of
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the inner peak is increased by a factor of 2.1 and its location is dis-
placed farther into the corner. A similar behavior is observed in the
outer peak. On the other hand, in the round corner ducts, the inner
and outer peaks remain located in the transition region between the
curved and straight walls. Moreover, the maximum value of Ωx is
only multiplied by a factor of 1.6 (from 0.7 to 1.1). The outer peak
is even more affected by the rounding radius and its magnitude re-
mains almost constant. This behavior could indicate that some of
the smallest structures may no longer be contributing to the produc-
tion of cross-flow.

Rectangular duct with round side walls
As the aspect ratio of the duct increases, the secondary vortices

that are attached to the horizontal walls become stronger and reach
farther in the spanwise and vertical directions. Note that Ψ = 0 and
Ωx = 0 at the symmetry planes because the cross-flow must be par-
allel to these planes. Consequently, their counter-rotating neighbors
in the adjacent vertical straight walls become weaker and increas-
ingly attached to the wall. Interestingly, substituting the straight
side walls by a semi-pipe with r/h = 1 eliminates these smaller
vortices, as shown in Figure 3. Therefore, the cross-flow in ducts
with round side walls consists of only two counter-rotating vor-
tices located at each side of the duct. These vortices convect the
flow and associated velocities from the core of the duct towards the
round side walls and from the horizontal walls towards the core.
The streamlines of the cross-flow come closer to each other near
the horizontal symmetry plane and the junction point between the
straight and curved walls, indicating that the magnitude of the cross-
flow is higher in these regions. The center of the vortices and the
point of maximum cross-flow magnitude are also located near the
region of transition from straight to curved walls, which highlights
the important role of curvature changes on the production of these
vortices. In spite of the reduction in the number of vortices, the re-
maining ones become stronger, increasing the total cross-flow rate
from the centerplane to the sidewalls and reaching farther into the
core of the duct. In the AR = 3 and AR = 5 cases, Ψmax rises from
3.8× 10−3 to 4.7× 10−3 and from 3.8× 10−3 to 4.6× 10−3, re-
spectively. The enhanced cross-flow reaches farther into the center
of the duct, lifting the isolines of the streamwise velocity from the
wall, as can be observed in Figure 3. Therefore, the flow becomes
less two-dimensional near the centerplane!

The inner and outer peaks of the streamwise vorticity are also
located in the transition point between the straight and round walls.
The maximum vorticity value is reduced due to the rounding from
Ωx = 0.72 to Ωx = 0.61 and from Ωx = 0.65 to Ωx = 0.51 in the
cases with AR= 3 and 5, respectively. Also, note that the magnitude
of the outer peak is halved. Again, this behavior highlights the im-
portance of the larger structures in the production of cross-flow over
the smaller scales, that are present in the near-corner region of the
90◦-corner ducts, since the round side walls hinder inhomogeneous
interaction between the latter.

WALL-SHEAR STRESS DISTRIBUTION
The rounding radius prevents the wall-shear stress τw from

plunging to zero at the corner, due to the overlapping vertical and
horizontal boundary layers, as shown in Figure 4. The coordinate
s in this figure measures the distance from the vertical centerplane
(x = 0) along the perimiter of the duct. Note that the coordinate
spans the surface between the centerplane and the closest symmetry
plane, i.e., the corner bisector (y =±x) if AR = 1 and the horizontal
centerplane (y= 0) if AR> 1. Thus, s≡ z in the straight surface and
its maximum value corresponds to 1/8 and 1/4 of the perimeter of
the square and rectangular ducts, respectively. With this definition,
the sharp corner is located at s/h = AR and the transition between
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Figure 4. Wall-tangent distributions of the wall-shear stress nor-
malized with the centerplane value τc.

straight and curved surfaces at s/h = AR− r/h.
As discussed by Pinelli et al. (2010), the position of the local

maximum and minimum values of the τw distribution correspond to
the statistically preferred location of high- and low-velocity streaks
respectively. Note that in the pipe and channel cases, where τw(s)
is constant, there are no preferential locations for velocity streaks
due to the azimuthal and spanwise periodicities. On the other hand,
a high-speed streak is always situated near the sharp corners, where
a local maximum of τw occurs. As the Reynolds number increases
the streak approaches the corner while maintaining a distance of
around 60 viscous units. In the AR = 1 90◦-corner ducts shown in
Figure 4 (top), the local maximum of τw is displaced from s/h '
0.67 to 0.83 as the nominal Reτ,c is increased from 180 to 360,
therefore, keeping this distance. Figure 4 (bottom) shows that a
similar behavior is found in the AR > 1 cases, where the two local
maxima, situated at each side of s/h = AR, correspond to the same
high-speed streak.

Our results in rounded ducts show that the distribution of τw
gradually rises near the end of the straight wall and quickly drops
right before the beginning of the curved region, with an inflection
point located in the transition between the two walls. In fact, τw
exhibits an absolute maximum value near the transition point of the
AR = 1 ducts, as shown in Figure 4 (top). The exact location of
the maximum is less sensitive to the Reynolds number. As Reτ,c
increases, its location slightly approaches the transition point, mov-
ing from s/h ' 0.43 to 0.46. Interestingly, the inner-scaled dis-
tance between the location of the peak and the transition point is
∆s+ ' 10.5 in the three cases with inner-scaled radius r+ ' 180. In
the 180AR1r case, where r+ ' 90, this distance corresponds to 12.8
viscous units.

Pinelli et al. (2010) also showed that the high-velocity streak
is flanked by two low-speed streaks located at each of the ad-
jacent walls. The distance between the low- and high-velocity
streaks roughly corresponds to half the average inner-scaled span-
wise length of the bursting cycle, i.e., ∆s+ ' 50. Our results with
round walls show that a low-velocity streak is always situated in the
straight wall roughly at this distance from the high-speed streak, as
indicated by the position of the local minimum of τw in this region.
In the round wall, however, the other low-speed streak is not always
located close to the transition point.

Vinuesa et al. (2014) showed that in rectangular ducts a pat-
tern of preferentially distributed high/low-velocity streaks is formed
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Figure 5. Secondary Reynolds-shear stresses uxut and unut scaled
with the centerplane friction velocity. Color plots showing uxut (9
contours with increments of 0.05). Red contours of unut > 0 with
increments of 3×10−3 and white contours of unut < 0 with incre-
ments of 0.01. The maxima and minima of τw along the wall are
indicated by circles and diamonds, respectively.

starting from the high-speed streak situated near the corner. This
behavior is reflected in the oscillations of the wall-shear stress dis-
tribution, which decay with the inner-scaled distance to the corner.
The pattern, which is also present in our results, can be better appre-
ciated in Figures 5 and 6, where the position of the high- and low-
speed streaks along the wall is marked with circles and diamonds,
respectively. The figure shows that streaks are distributed through-
out the walls in pairs. Each pair consists of a high- and a low-speed
streak that is oriented such that the high-speed streak is positioned
closest to the side wall. Note that a special situation occurs in sharp
corners, where one high-speed streak belongs to two different cou-
ples located on each of the adjacent walls. This pattern is affected
by the combined effect of marginally turbulent flow effects and the
presence of symmetry planes, where the wall-shear stress distribu-
tion must exhibit a local extrema. Marginally turbulent flow effects
have been documented in straight ducts by Uhlmann et al. (2007).
These effects are present if the inner-scaled width of the duct Wd

+

is not long enough to fit at least 4 simultaneous streaks. Note that
Wd

+ grows with higher AR and/or Reτ,c, allowing more streaks to
be simultaneously present in the wall. Therefore, these effects are
particularly important in the 180AR1r, case where the inner-scaled
curved and straight parts are too short to fit 4 streaks simultaneously.

CROSS-FLOW GENERATION MECHANISMS
Further insight on the mechanisms that produce the cross-flow

can be gained by analyzing the secondary Reynolds-shear stresses.
Note that these components of the Reynolds-stress tensor are zero
in pipe and channel flow due to the periodicity of the wall-tangent
direction. We have rotated the Reynolds-stress tensor of the curved
duct cases in the y− z plane such that un and ut are the wall-normal
and wall-tangent fluctuating velocities with respect to the closest
wall. The wall-normal and wall-tangent directions are considered
positive into the core of the flow and in the anti-clockwise direction,
respectively. In AR > 1 straight ducts, however, there is no simple
way to rotate the tensor as the corner bisector is not a symmetry
plane. Therefore, in these cases n and t refer to the vertical and

Figure 6. Secondary Reynolds-shear stresses uxut and unut scaled
with the centerplane friction velocity. Color plots showing uxut (9
contours with increments of 0.05). Red contours of unut > 0 with
increments of 3×10−3 and white contours of unut < 0 with incre-
ments of 0.01. The maxima and minima of τw along the horizon-
tal and curved walls are indicated by circles and diamonds, respec-
tively.

horizontal directions. Doing so, we can compare the distributions
of uxut and unut , in curved and straight ducts, which are shown in
Figures 5 and 6.

Huser & Biringen (1993) used quadrant analysis to study the
nonzero distributions of uxut and unut . According to them, the high
value of uxut > 0 and unut < 0 near the sharp corner is produced
by inhomogeneous interaction between bursting events arising from
the adjacent walls. However, these regions are also present in the
curved ducts, despite the absence of sharp corners. Interestingly,
the distributions of uxut and unut exhibit a similar pattern to the one
found in streak pairs and discussed in the previous section. The
uxut > 0 region is located below each pair and flanked by a region
of uxut < 0. Similarly, the positive and negative regions of unut
are located close to the high- and low-speed members of each pair.
The correlations are stronger near the sharp corner and the transition
between straight and curved walls, and decay towards the vertical
centerplane of the ducts.

This behavior can be explained by considering the instanta-
neous vortices associated to the streaks. In curved ducts, as the
energetic structures in the core of the duct (ux > 0) approach the
curved walls (un < 0), they must turn in the wall-tangent direction
(ut > 0) generating uxut > 0 and unut < 0, and then leave the wall
(un > 0) producing unut > 0. Therefore, the regions of uxut > 0
are associated to the preferential position of high-speed sweeps.
These sweeps drag low-momentum fluid (ux < 0) from the near-
wall region triggering an ejection that is responsible for the adja-
cent uxut < 0 region at a rough distance of 100 viscous units. No-
tice that this ejection causes the cross-stream lines to lift away from
the wall in this region, as shown in Figure 3. Also, the ejection
tilts towards the side walls (unut < 0), distorting the isolines of U
slightly farther in this direction. This ejection is in turn responsible
of promoting the appearance of an adjacent sweep located farther
towards the vertical centerplane. This behavior leads to a decaying
pattern of preferentially-arranged alternating sweeps and ejections,
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which is responsible for cross-flow production along the wall. The
corresponding pattern of instantaneous vortices is shown by Vin-
uesa et al. (2015b) in rectangular straight ducts using short averag-
ing periods. Notice that the negative regions of unut < 0 are much
stronger than the positive ones and extend farther away from the
wall, since they are caused by the large energetic structures from
the core of the duct, which can only approach the side walls in the
negative wall-tangent and wall-normal directions. The unut > 0 and
uxut > 0 regions, however, are generated by the sweep within the
near-wall region. Therefore, they are scaled in viscous units, as
shown in Figure 5.

The sharp corners lead to a more complex interaction between
the turbulent structures and the wall. Sweeps entering the sharp
corners through the corner bisector must also tilt in the wall-tangent
direction, i.e., either the vertical or the horizontal directions. The
region of uxut > 0 on the bottom wall is produced when they tilt in
the horizontal direction. However, this region is smaller and weaker
than in the corresponding curved cases. This weakening and wall-
confinement is even more apparent at higher Reynolds numbers, as
shown in Figure 5. One explanation for this is that the sweep will
also trigger an ejection (ux < 0) on the vertical wall, which tilts
towards the horizontal wall (ut > 0 and un < 0) generating unut < 0
near the corner, and uxut < 0 above the horizontal wall, as shown
by Huser & Biringen (1993). The ejections that tilt from the left
wall towards the bottom wall (un < 0) counteract the effect of the
sweeps that turn in the vertical direction (un > 0) and oppose the
mean cross-flow momentum in the region. Therefore, this type of
interaction could be responsible for the lower mean cross-flow rates
found in ducts with sharp corners.

CONCLUSIONS
Direct numerical simulations (DNSs) of fully-developed turbu-

lent rounded ducts are carried out using the spectral element code
Nek5000 to study the impact of the rounding on the secondary flow
and better characterize the mechanisms that produce it. We have
considered square ducts with round corners, at Reτ,c ' 180 and 360,
and rectangular ducts of width-to-height ratios 3 and 5 with round
side walls, at Reτ,c ' 180. The results are compared with the corre-
sponding 90◦-duct cases showing that the rounding radius increases
the total cross-flow rate from the core of the duct towards the walls.
These results were initially unexpected since the mean cross-flow
is not present in round pipes. The extrema of the in-plane stream
function Ψ and the streamwise vorticity Ωx relocate near the transi-
tion point between the two walls with different curvature. Also, the
distributions of Ψ and Ωx become less sensitive to changes in the
Reynolds number, which highlights the role of the larger structures
in generating the secondary flow.

Considering the rounded ducts, the relative extrema of the wall-
shear stress show that preferentially arranged high- and low-speed
streak pairs are distributed throughout the wall, starting from a high-
speed streak situated in the curvature transition point. A similar
pattern is observed in the distribution of the positive and negative
secondary Reynolds-shear stresses. Both patterns can be associated
to the preferential location of a sweeping event close to the curva-
ture transition point. In the cases with AR > 1, the sweep triggers
an ejection in the adjacent straight wall, which tilts towards the side
walls. The ejection is responsible for the distortion of the isolines
of Ψ and U at ∆z ' 1 from the curvature transition point. This
pattern, which repeats in a decaying manner towards the vertical
centerplane, eventually generates the mean cross-flow. Additional
interaction between bursting events is present in the near-corner re-
gion of the 90◦-corner ducts leading to a secondary cross-flow dis-
tribution that is more sensitive to the Reynolds number. Some of
these interactions counteract the effect of the sweeps and oppose

the local mean cross-flow, which explains the lower cross-flow rates
found in these cases.

So far our computations with parametric configurations of var-
ious rectangular ducts with increasing aspect ratios, starting from
the square duct case, and with various rounding of corners and end
walls, have yet to reveal clues on how best to design a channel flow
in the laboratory.
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