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ABSTRACT
High-Schmidt number flow simulations are challenging since

the flow has to be resolved down to the Batchelor scale, which yields
high resolution requirements. In order to close the gap between the
flow regime of applications and that reachable by numerical simula-
tions, we utilize a stochastic modeling approach, the so-called One-
Dimensional Turbulence (ODT) model. In the present study, ODT
is used as stand-alone tool to investigate the turbulent transport of a
passive scalar for Schmidt numbers 1 ≤ Sc ≤ 5000 in incompress-
ible, fully-developed turbulent channel flows for Reynolds numbers
Reτ ≤ 2000. The applicability of ODT is assessed by comparing the
scalar mean and the root mean square fluctuations to those of ref-
erence Direct Numerical Simulations (DNS) and Large-Eddy Sim-
ulations (LES) up to Sc = 400. Good qualitative but also quan-
titative agreement is observed between DNS, LES, and ODT, but
ODT underestimates the mean scalar concentration in the bulk by
a factor of ≈ 3/4. Otherwise, ODT exhibits the correct boundary
layer structure and yields the von Kármán constant for the scalar
as κθ = 0.23, which corresponds well to the available reference
DNS/LES. ODT is then used to simulate the scalar mass transfer
coefficient K+ up to very high Schmidt numbers. The power law
K+

ODT ∝ Sc−0.651 is obtained for Sc > 100 where it is also indepen-
dent of the Reynolds number. This corresponds to the reference lab-
oratory measurements and DNS/LES, which obey K+

lab ∝ Sc−0.704.
The present study shows that ODT can be a versatile tool for robust
and accurate modeling of the turbulent scalar transport up to very
high Schmidt and Reynolds numbers.

INTRODUCTION
The turbulent transport of a passive scalar (like small tempera-

ture variations, a single tracer, dye, or smoke) is relevant for many
technical applications, for example, to study the cooling rate of a
technical device under different operation conditions. Numerical
simulations of related flow problems have remained a challenging
task due to the resolution requirements imposed by the develop-
ment of very small scales in the flow. That is, the scalar field ex-
hibits spatial scales as small as the Batchelor scale ηB = Sc−1/2ηK
(Batchelor, 1959), which can be much smaller than the Kolmogorov
scale ηK when the Schmidt number Sc≡ ν/Γ (kinematic viscosity
ν , scalar diffusivity Γ) is much larger than unity. It is crucial to re-
solve the small scale dynamics everywhere in the flow in order to
predict the spatio-temporal distribution of the scalar correctly and,
hence, the scalar mass transfer rate across the wall. Past (e.g Shaw
& Hanratty, 1977) and recent studies (e.g. Na et al., 1999; Schwert-
firm & Manhart, 2007; Hasegawa & Kasagi, 2009; Ostilla-Monico
et al., 2015) investigated how the turbulent scalar transport depends
on the Schmidt and Reynolds number. The conclusion from these
studies is that the turbulent scalar transport is not fully analogous to
the turbulent momentum transport, so that a “simple parameteriza-
tion” of the scalar transport is often not permissible.

Recent numerical studies used different methods to study the

phenomena governing the scalar transport. The methods encom-
pass multi-resolution strategies (e.g. Schwertfirm & Manhart, 2007;
Ostilla-Monico et al., 2015), hybrid resolution approaches (e.g.
Hasegawa & Kasagi, 2009), or Langrangian methods (e.g. Na et al.,
1999). All of them basically avoid a costly over-resolution of the ve-
locity field by computing only the passive scalar on a finer grid. The
Lagrangian methods exploit in addition that the passive scalar has
no feedback on the flow evolution due to which the velocity field
is prescribed for the scalar evolution. This decoupling of the scalar
and momentum evolution cannot be used for buoyant or reacting
flows, so that Eulerian methods have also been used for an investiga-
tion of the passive scalar transport. These Direct Numerical Simula-
tions (DNS) or high-resolution Large-Eddy Simulations (LES) are
currently feasible only for Schmidt numbers Sc ≤ 1000 provided
that the Reynolds number is rather small, say Reτ ≤ 200, where
Reτ ≡ uτ δ/ν is the friction Reynolds number (with the friction ve-
locity uτ and the channel half-height δ ). In laboratory experiments
and applications, however, both the Schmidt and the Reynolds num-
ber may easily exceed 104 (as in Shaw & Hanratty, 1977, for exam-
ple).

In the present study, we utilize the One-Dimensional Turbu-
lence (ODT) model to make turbulent channel flow simulations fea-
sible at high Schmidt and Reynolds numbers. ODT resolves all
spatial scales of the flow by stochastically modeling the temporal
evolution of property profiles along a notional line of sight through
the three-dimensional (3-D) turbulent flow. In this paper, ODT re-
sults of turbulent channel flows up to Sc ∼ 104 and Reτ ∼ 103 are
reported.

The rest of this paper is organized as follows. First, the ap-
plication of ODT to the simulation of turbulent channel flows with
a passive scalar is outlined. Second, mean and fluctuation profiles
obtained by ODT are compared to available DNS/LES results for
moderately high Schmidt numbers (1≤ Sc≤ 400). Third, the scalar
mass transfer coefficient obtained by ODT is compared to avail-
able numerical data and laboratory measurements up to very high
Schmidt numbers (Sc ≤ 5000). The paper closes with a summary
and concluding remarks.

ODT APPLIED TO TURBULENT CHANNEL FLOWS
The One-Dimensional Turbulence (ODT) is a relatively new

approach for multi-scale modeling of turbulent transport (Kerstein,
1999; Kerstein et al., 2001). The adaptive numerical solver used
for this work has been described by Lignell et al. (2013). In the
following, we first outline central aspects of ODT, then move on
to the channel flow configuration, and finally discuss typical flow
profiles.

ODT in a Nutshell
The central idea of ODT is to model dimensions rather than

scales by simulating a turbulent flow only on a notional line of sight
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through that flow. Along this 1-D domain, Navier–Stokes turbu-
lence is not reproduced exactly but its effect is modeled by stochas-
tically perturbing the velocity and scalar profiles. The conservation
equations are therefore split into source terms, molecular diffusion,
and stochastic re-arrangements (eddy events) along the 1-D domain,
that is,

∂ui

∂ t
+Ei(u j) = ν

∂ 2ui

∂y2 +Fi, (1)

∂θ

∂ t
+Eθ (u j) = Γ

∂ 2θ

∂y2 +Sθ , (2)

where y denotes the ODT line coordinate, t the time, ui the veloc-
ity vector, θ the passive scalar, Fi the external forces, Sθ the scalar
sources, ν the kinematic viscosity, Γ the scalar diffusivity, and E
the eddy events. In equations (1) and (2) the eddy events depend
only on the instantaneous velocity profiles u j(y, t). This is the ODT
analog of the passive scalar, where only the velocity affects the se-
lection and implementation of eddy events which we will discuss
shortly. Note the subscripts θ and i to E which remind us of dif-
ferences in the eddy implementation between the passive scalar and
the velocity, respectively. Ei differs from Eθ due to the inclusion
of pressure-velocity correlations and the exchange of kinetic energy
between the velocity vector components.

The eddy events are the fundamental building block of ODT.
They are implemented by triplet-mapping the velocity and scalar
profiles across an eddy of size l. This mimics the effect of turbu-
lent stirring phenomenologically by steepening the property (scalar
and velocity) gradients locally. The triplet map consists of (i) a
compression of a property profile to a third of its original length,
(ii) filling the interval by two copies of the compressed profile, and
(iii) flipping the central copy to ensure continuity and conservation
(for details see Kerstein, 1999).

The eddy size l and the position y0 are sampled individually
from approximate distributions since the actual eddy rate distri-
bution λ (l,y0, t) is unknown. In ODT, λ (l,y0, t) dl dy0 gives the
number of eddies in the size range [l, l +dl] and the position range
[y0,y0 +dy0] during a time interval [t, t +dt]. Dimensional analysis
shows that λ (l,y0, t) is inversely proportional to the squared eddy
size and the ODT analog eddy turnover time τ(l,y0, t), that is,

λ (l,y0, t) =
C

l2 τ(l,y0, t)
, (3)

where C is the ODT turbulence intensity parameter. Since l/τ can
be interpreted as a measure for the eddy velocity, a measure for the
eddy specific kinetic energy is given by l2/τ2, which is related to
the velocity field by (summation convention implied)

l2

τ2 ' u2
K,i +α Ti j u2

K, j−Z
ν2

l2 , (4)

in which uK,i is the triplet-mapped and mapping-kernel-weighted
velocity field, Ti j is the transfer tensor that models the kinetic en-
ergy exchange between the velocity components due to velocity-
pressure correlations, α is the isotropy parameter, and Z is the vis-
cous penalty parameter that effectively limits the smallest possible
eddies. Equations (3) and (4) suggest that the extractable energy can
be used to decide which of the candidate eddies are physical. That
is, the larger the eddy energy l2/τ2, the larger the probability for
eddy acceptance. A thinning-and-rejection algorithm ensures that

θtop

θbot
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Figure 1. Sketch of the channel flow configuration investigated.

the ODT results will not depend on the approximate distribution
from which candidate eddies are sampled.

Note that the eddy energy and the eddy acceptance depend
only on the instantaneous velocity field in the case of a passive
scalar. Buoyant or reactive flows can be treated straightforwardly
in ODT by an extension of the eddy energy formulation (for details
see Lignell et al., 2013). This leaves C, Z, and α as the core model
parameters, which need to be optimized for the flow configuration
under consideration.

The Channel Flow Configuration
Figure 1 shows a sketch of the channel flow configuration in-

vestigated in this study. We consider an incompressible, Newtonian
fluid between the top and bottom wall. The flow is driven by a mean
pressure gradient, which yields the force Fx =−ρ−1(dP/dx) = 1 in
equation (1). At the top and bottom wall, homogeneous no-slip
conditions are used for the velocity (ubot,i = utop,i = 0) and Dirich-
let boundary conditions prescribe the passive scalar (θbot = +1,
θtop =−1). There are no other sources sources for the passive scalar
which yields Sθ ≡ 0 in equation (2).

Here, the computational domain for the channel flow is simply
the line segment denoted “ODT line” in figure 1 which spans the
entire channel height 2δ in wall-normal direction y. In this setting,
the streamwise (x) and spanwise (z) directions are taken to infinity
and we assume that the flow is statistically stationary.

Optimization of the ODT Parameters
Modeling the turbulent transport of the momentum and the pas-

sive scalar together yields requirements that need to be met by ad-
justing the three ODT parameters. For the simulations of this work,
the optimal parameters read C = 6 (turbulence intensity), Z = 300
(viscous penalty), and α = 1/6 (anisotropy). The optimization
aimed to match the mean and the r.m.s. profiles of the streamwise
velocity (u) and the passive scalar (θ ) of ODT and reference DNS
results for channel flows at Reτ = 180 and 2000 with Sc = 1. The
Reτ = 180 case was used to find combinations of ODT parameters
that yield mean scalar and velocity profiles close to the reference
DNS of Schwertfirm & Manhart (2007) and Moser et al. (1999) re-
spectively. Then, the Reτ = 2000 case was used to confirm that the
modified ODT parameters will reproduce the reference DNS veloc-
ity profile of (Lee & Moser, 2015).

The model parameters were kept fixed for the variation of the
Schmidt and Reynolds number. We assured ourselves that simula-
tions conducted for Sc > 1 do not exhibit significant changes in the
velocity profile. It is due to the adaptive ODT solver implementa-
tion, however, that the velocity profiles exhibit a weak dependency
on the Schmidt number due to a higher resolution of the velocity
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Figure 2. Simulated mean and instantaneous wall-normal profiles
for a channel flow at Reτ = 180 and Sc = 10. DNS mean profiles
from Moser et al. (1999, velocities) and Schwertfirm & Manhart
(2007, passive scalar).

field with increasing Sc. This is a spurious effect at low Reynolds
numbers and becomes negligible for Reτ > 103.

It is worth to mention that an optimization of the isotropy pa-
rameter α was essential for the present study. Usually, α is kept
constant at 2/3 to yield the fastest tendency towards small-scale
isotropic turbulence (compare with Kerstein et al., 2001). This is a
bit different when ODT is used as stand-alone tool that also needs to
resolve the non-universal large scales (see also Meiselbach, 2015).

Typical Scalar and Velocity Profiles
Figure 2 shows various simulated wall-normal profiles of the

scalar (θ ), the streamwise (u) and wall-normal (v) velocity compo-
nents for Reτ = 180 and Sc= 10. Time-averaged profiles θ̄(y), U(y)
and V (y) obtained by ODT (thin solid lines) are shown in compar-
ison to a corresponding DNS (thick dashed lines) of Schwertfirm
& Manhart (2007) and Moser et al. (1999), respectively. Both U(y)
and θ̄(y) exhibit steep gradients near the channel boundaries, which
is a consequence of the Reynolds stresses that result from turbulent
stirring. The passive scalar is affected even more by stirring since
it exhibits a factor Sc = 10 slower diffusion time scale than the mo-
mentum. The wall-normal velocity vanishes on average (V = 0),

An example of instantaneous ODT property profiles u(y, t),
v(y, t), θ(y, t) is also shown in figure 2 (thin dashed lines). One
can see the combined effect of eddy events (triplet-mapping) and
molecular diffusion (smoothing), which results in qualitatively sim-
ilar perturbations of the profiles for u and θ . Looking carefully at
the profiles reveals somewhat more details on the small-scales in the
scalar profile, for example, as seen in the neighborhood of the local
minima at y≈ 0.5, 1.0, 1.5 and the local maximum at y≈ 1.3.

It is remarkable that the time-averaged property profiles ob-
tained by stand-alone ODT (figure 2) exhibit good qualitative, but
also quantitative agreement with the reference DNS results. ODT
appears to reproduce the near-wall structure of the mean profiles
fairly well (to be discussed in more detail below), but at least for
the low-Reτ case shown, ODT underestimates the bulk streamwise
velocity and overestimates the absolute value of the passive scalar in
the bulk of the fluid. Slightly different values of the passive scalar
are approached from the walls toward the centerline (y = 1) due
to which the gradient steepens again there. There is no such fea-
ture visible in the DNS results, which hints at a slightly incorrect

turbulent scalar transport representation within the present setup of
stand-alone ODT.

Note further that the mean scalar profile in figure 2 exhibits a
near-wall oscillation. The latter is likely related to the triplet map
as discussed by Lignell et al. (2013).

In the next section, the statistical quantities of the passive scalar
are investigated in the boundary layer to quantify ODT’s ability to
model turbulent scalar transport.

STATISTICAL ANALYSIS FOR VARIOUS SCHMIDT
AND REYNOLDS NUMBERS

The variation of the Schmidt and Reynolds number was started
with an initial long-time simulation for Sc = 1 and Reτ = 180 using
homogeneous initial conditions. This simulation was continued for
about 106 frictional time units (tτ = ν/u2

τ ) to gather statistics on
the 1-D computational domain and to obtain property profiles in
the statistically stationary state. The latter were used to initialize
simulations at slightly larger values of Sc or Reτ . The transient
stage before gathering statistics was thus reduced to one third of the
total simulation time.

The statistics were gathered over the last two thirds of the sim-
ulated time and an ensemble of N = 4 independent flow realizations.
This yields a total of at least 4× 105 frictional time units as statis-
tical basis, which corresponds to an implementation of at least 105

ODT eddy events on the 1-D domain. We made sure that the last
two sampling periods yield the same mean profile. So, basically,
only the higher order statistics profit from a doubling of the sam-
pling time interval. Note in this respect that the simulation time
was shorter for larger Reynolds numbers, since an increase of the
latter corresponds to an increase in the turbulence intensity or, like-
wise, an increase of the ODT eddy rate. For Sc > 103, the efficiency
of ODT is notably reduced due to the resolution requirements im-
posed by the scalar, so that the simulation times were kept as low
as possible. The high-Sc simulation results thus exhibit the smallest
statistical ensembles.

In the following, all variables are expressed in friction units
which is indicated by the superscript ‘+’. We use

y+ =
uτ

ν
y, θ̄

+ =
θ̄ −θwall

θτ

,

with uτ =

√
ν

∣∣∣∣dU
dy

∣∣∣∣
wall

, θτ =
Γ

uτ

dθ̄

dy

∣∣∣∣
wall

. (5)

First Order Statistics
Figure 3 shows various wall-normal profiles of the mean

scalar concentration θ̄+(y+) in semi-logarithmic scale for differ-
ent Schmidt and Reynolds numbers. DNS results of Schwertfirm &
Manhart (2007), DNS/LES results of Hasegawa & Kasagi (2009),
and the conductive sublayer scaling (θ̄+ = Sc y+) are plotted for
comparison. Good qualitative and quantitative agreement is ob-
served between ODT and DNS/LES for all values of Sc and Reτ

investigated.
Quantitative agreement between ODT and DNS/LES is exhib-

ited by the conductive sublayer for which the mean scalar gradient
increases linearly with the Schmidt number, (dθ̄+/dy+)|wall = Sc.
The conductive sublayer scaling is met for y+ < 2 Sc−0.29 (on the
origin of the exponent 0.29 see Schwertfirm & Manhart, 2007).

Qualitative agreement between ODT and DNS/LES is exhib-
ited across the logarithmic layer (y+ > 20 Sc−0.29) by means that
θ̄+ increases nonlinearly with the Schmidt number. Stand-alone
ODT, however, systematically underestimates θ̄+ there. This ef-
fect is present also for low-Sc, but is only visible for Sc≥ 49 in the
present scaling due to the large range of θ̄+ values.

1B-2



Figure 3. Semi-logarithmic plot of the wall-normal mean scalar
profile for various Sc and Reτ . Reference results are from Schwert-
firm & Manhart (2007, Reτ = 180, DNS) and Hasegawa & Kasagi
(2009, Reτ = 150, DNS/LES).

Table 1. Fitted coefficients κθ and Bθ parameterizing the loga-
rithmic layer profile according to equation (6). Reference results
are from Schwertfirm & Manhart (2007, Sc≤ 49, Reτ = 180, DNS)
and Hasegawa & Kasagi (2009, Sc ≥ 100, Reτ = 150, DNS/LES).
The fits have been performed in the range y+ ∈ [40, 100] for turbu-
lent flows at Reτ = 180 and 150, respectively.

Sc κODT
θ

BODT
θ

κDNS
θ

BDNS
θ

BODT
θ

/BDNS
θ

1 0.25 -0.5 0.27 2.3 —

10 0.25 41.7 0.26 52.8 0.79

49 0.24 138.0 0.27 174.0 0.79

100 0.24 227.0 0.19 300.0 0.76

200 0.23 369.0 0.22 481.0 0.77

400 0.23 585.0 0.24 803.0 0.73

1000 0.21 1070.0 — — —

Interestingly, the logarithmic layer exhibits also quantitative
agreement between ODT and DNS/LES but only with respect to the
“slope” of the log law. This is not easily seen in figure 3, wherefore
we fitted the simulated profiles with

θ̄
+(y+) =

1
κθ

lny++Bθ , (6)

in which κθ is the von Kármán constant for the passive scalar and
Bθ is a constant offset. Both κθ and Bθ may depend in general on
Sc and Reτ , but the ODT results in figure 3 suggest only a weak Reτ -
dependency. It needs to be clarified elsewhere if this is physically
correct since the DNS/LES data available are not yet sufficient.

Table 1 shows the coefficients obtained by fitting equation (6)
for y+ ∈ [40, 100] to various simulated mean scalar concentration
profiles using a least-squares algorithm. Since 1/κθ varies less with
Sc than Bθ does, the ratio BODT

θ
/BDNS

θ
can be used approximately to

Figure 4. Semi-logarithmic plot of the wall-normal root mean
square (r.m.s.) scalar fluctuation profiles for various Reτ and Sc.
The profiles are offset with increasing Sc to aid visualization and
each corresponding base line (θ+

rms = 0) is given by a dash-dotted
horizontal line for orientation. Reference results are from Schwert-
firm & Manhart (2007, Reτ = 180, DNS) and Hasegawa & Kasagi
(2009, Reτ = 150, DNS/LES).

quantify the ODT-bias of the mean scalar concentration throughout
the logarithmic layer. As can be seen in table 1, this ratio is almost
constant at around BODT

θ
/BDNS

θ
≈ 3/4.

Note that the DNS of Schwertfirm & Manhart (2007) yield
the von Kármán constant to be κDNS

θ
≈ 0.27 for Reτ = 180 and

Sc ∈ [1, 49], but DNS/LES results of Hasegawa & Kasagi (2009)
yield a ≈ 25% lower value for a similar Reynolds number but
Sc ∈ [100, 400] (see table 1). It is interesting that stand-alone ODT
is able to predict the value of κθ within this scatter of the DNS/LES
results. We attribute the differences between stand-alone ODT and
DNS/LES to originate primarily from the buffer layer, where ODT
does not resolve 3-D flow features that seem to be crucial for the
scalar transport. This suggests that the assumption of featureless
turbulence, which underlies ODT, is acceptable for the logarithmic
layer, but not for the buffer layer. As a consequence, the turbu-
lent scalar transport seems to be inhibited across the buffer layer
in stand-alone ODT, which might explain the lower θ̄+-value ob-
served throughout the logarithmic layer (figure 3).

We assess the hypothesis of less turbulent transport across the
buffer layer in ODT with the aid of the fluctuation statistics in the
following section.

Second Order Statistics
Figure 4 shows wall-normal profiles of the root mean square

(r.m.s.) scalar fluctuations θ+
rms(y

+) in semi-logarithmic scale for
different Schmidt and Reynolds numbers. DNS results of Schw-
ertfirm & Manhart (2007) and DNS/LES results of Hasegawa &
Kasagi (2009) are plotted for comparison in a reduced range of val-
ues. To aid visibility, the profiles for different Schmidt numbers are
plotted with a vertical offset in steps of ∆θ+

rms = 50 for Sc ≤ 200,
∆θ+

rms = 75 for Sc = 400, and ∆θ+
rms = 125 for Sc = 1000. The

shifted zero-lines are dash-dotted for these cases. Small fluctua-
tions for Sc = 1000 indicate that that the statistical ensemble should
be enlarged if a smoother profile is required.

The r.m.s. profiles shown in figure 4 exhibit good qualita-
tive but also quantitative agreement between stand-alone ODT and
DNS/LES. Quantitative agreement is observed in the vicinity of
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the wall (y+ < 5 Sc−0.29) and in the logarithmic layer (y+ > 20).
There, the magnitude of the scalar fluctuations is reproduced cor-
rectly, which seems to agree well with the result of the previous
section: ODT performs well near the wall and throughout the log-
arithmic layer. However, only qualitative agreement is observed in
the buffer layer discussed in the following.

In the DNS/LES results shown in figure 4, the onset of a
near-wall peak can be discerned at around y+max ≈ 5 for Sc = 10.
The onset of this peak is captured by stand-alone ODT for pre-
cisely the same Sc and approximately at the same location, but
the r.m.s.-peak seems a bit weaker in magnitude than in the ref-
erence DNS/LES. With increasing Sc, this peak increases in mag-
nitude and moves closer to the wall. The reference DNS/LES ex-
hibit the maximum at y+max ≈ 4 for Sc = 49 and at y+max ≈ 1.5 for
Sc = 400. The corresponding peak in the ODT results, however,
appears much closer to the wall, is smaller in magnitude, and is ac-
companied by a local minimum at some further distance from the
wall (3 < y+min < 10 in dependence on Sc). This local minimum
is not present in the DNS/LES solution. However, this deficiency
in the fluctuations (and presumably in the turbulent scalar trans-
port) affects only the mean scalar concentration as discussed above,
whereas the scalar r.m.s. values themselves agree rather well with
the reference DNS/LES throughout the logarithmic layer. Alto-
gether, the r.m.s. values support the assertion of less turbulent scalar
transport across the buffer layer within ODT.

It is worth to note that the spatial oscillation in the ODT scalar
r.m.s. profiles (figure 4) corresponds to the spurious near-wall oscil-
lation noted earlier for the mean scalar concentration (figure 2). A
similar spatial structure has been observed by Lignell et al. (2013)
for the velocity r.m.s. values. These authors suggest that the reason
is to be seen in the near-wall eddy events, which turn out self-similar
due to the form of the triplet map and almost identical in value due
to the conservation properties of ODT. Hence, subsequent near-wall
eddy events possess a large overlap so that temporal averaging can-
not remove the triplet-map structure from the statistical quantities.
Here, with respect to the scalar fluctuations (figure 4), the side ef-
fect is that ODT cannot develop the near-wall peak since the spu-
rious spatial oscillation interferes with or even replaces the r.m.s.
peak expected from the DNS/LES.

Interestingly, the scalar fluctuation profiles obtained by stand-
alone ODT shown in figure 4 collapse almost exactly for the dif-
ferent Reynolds numbers investigated. This suggests that the tur-
bulent transport of a passive scalar is merely independent of the
Reynolds number, which is surprising given the range of Reτ inves-
tigated. It is also not quite expected, since it contradicts the weak
Reτ -dependency observed for the mean scalar profiles (figure 3).
Again, further research is needed to clarify the Reτ -dependency of
the turbulent scalar transport.

SCALAR MASS TRANSFER COEFFICIENT
The results discussed in the previous section have shown that

ODT is able to reproduce the mean and fluctuation statistics of the
reference DNS/LES throughout the conductive sublayer very well,
which is a prerequisite for computation of the scalar mass transfer
across the wall. In the following, the scalar mass transfer coefficient
obtained by stand-alone ODT is compared to available DNS/LES
results and laboratory measurements.

The scalar mass transfer coefficient K+ “parameterizes” the
scalar mass flux across the wall by an easy-to-measure scalar con-
centration difference. This coefficient is defined as

K+ =
θτ

∆θ
, (7)

which is the reciprocal scalar concentration difference between the
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Figure 5. Double-logarithmic plot of the scalar mass transfer co-
efficient K+ as function of the Schmidt number Sc for various
Reynolds numbers Reτ . Reference results are from Schwertfirm &
Manhart (2007, Reτ = 180, DNS) and Hasegawa & Kasagi (2009,
Reτ = 150, DNS/LES), two types of reference laboratory measure-
ments at high Reτ are from Shaw & Hanratty (1977, labeled a, b).

bulk (channel centerline) and the wall, ∆θ = θ̄bulk−θwall, measured
in units of the friction scale θτ (see equation (5)). For channel flows,
θ̄bulk is the mean scalar concentration at the centerline (y = δ as in
Schwertfirm & Manhart, 2007).

Figure 5 shows the scalar mass transfer coefficient K+(Sc)
as function of the Schmidt number obtained for various Reynolds
numbers in a double-logarithmic plot. ODT results for low-to-
high Reτ are shown in comparison to low-Reτ DNS/LES results
(Schwertfirm & Manhart, 2007; Hasegawa & Kasagi, 2009), as well
as measurements in a high-Reτ regime obtained from two differ-
ent configurations (Shaw & Hanratty, 1977). Good qualitative and
quantitative agreement is observed between ODT, DNS/LES, and
laboratory measurements by means that K+ values of similar mag-
nitude are obtained for corresponding Sc and Reτ , and by means that
K+ becomes independent of the Reynolds number for high Schmidt
numbers, here Sc > 102.

Moreover, the results in figure 5 show that measured and sim-
ulated K+ exhibit the power law

K+
∝ Sca for Sc→ ∞. (8)

Laboratory measurements yield alab = −0.704, whereas, theoreti-
cally, a scaling exponent of atheo = −2/3 or −3/4 is expected de-
pending on the structure of the boundary layer (Shaw & Hanratty,
1977). The “intermediate” value of the measured exponent hints at
a more complicated behavior in reality than is covered by existing
theory.

In order to elucidate the scaling exponent, numerical results
have been conducted and reported a relatively large spread of val-
ues (−0.7< a<−0.5, e.g. Na et al., 1999; Schwertfirm & Manhart,
2007; Hasegawa & Kasagi, 2009). Interestingly, only the reference
DNS/LES results of Hasegawa & Kasagi (2009) for Sc≥ 100 in fig-
ure 5 exhibit the scaling exponent of the laboratory measurements.
The power-law scaling according to equation (8) breaks down for
Schmidt numbers smaller than 100 due to a Reτ -dependency of the
scalar transport (see Schwertfirm & Manhart, 2007).

It is worth to point out that the K+ values obtained by stand-
alone ODT (figure 5) collapse on the same values for Schmidt
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numbers Sc > 102 for all Reynolds numbers investigated. The
ODT results exhibit a clear power-law scaling over a broad range
of Schmidt numbers and exhibit the scaling exponent aODT ≈
−0.651± 0.011, which has been obtained by a least-squares fit of
equation (8) to the K+ values obtained for Reτ = 180, 590, and
2000 in the range Sc ∈ [102, 104].

Furthermore, it is interesting that ODT results of K+ agree well
with the DNS/LES results also at low and moderate Schmidt num-
bers (see figure 5 for Sc < 102). At Sc = 1, ODT and the reference
DNS of Schwertfirm & Manhart (2007, Reτ = 180, channel) yield
almost the same value of K+ for corresponding Reτ , but there is a
notable difference to the DNS/LES of Hasegawa & Kasagi (2009,
Reτ = 150, wall). In the latter a slightly different configuration and
a lower Reynolds number flow was used. This case is dominated
by non-universal, system-scale flow features, but since the momen-
tum and passive scalar transport are strongly coupled by exhibit-
ing the same advective and diffusive time scales, it seems to be a
low-Reynolds-number effect that leads to a difference in the mass
transfer coefficients at Sc= 1 between ODT and the reference DNS.

Altogether, by the aid of ODT we have been able to simulate
high-Sc turbulent scalar transport in flow regime which is presently
inaccessible by DNS. Given the simplicity of ODT, it is amazing
that simulated values of K+ are less than a factor two (2) larger
than the measured values. No modification of the ODT parameters
took place, which indicates that ODT is a robust tool for turbulent
transport modeling up to very high Schmidt numbers.

SUMMARY AND CONCLUSION
We studied the turbulent transport of a passive scalar up to very

high Schmidt numbers (up to Sc = 5000) in fully-developed, turbu-
lent channel flows at various Reynolds numbers (up to Reτ = 2000)
using the stochastic One-Dimensional Turbulence (ODT) model as
stand-alone tool. ODT results were compared to available reference
data from DNS, LES, and laboratory measurements with respect to
profiles of the mean scalar concentration and the mean streamwise
velocity, the root mean square (r.m.s.) scalar fluctuations, and the
scalar mass transfer coefficient. In general, good qualitative and
quantitative agreement has been obtained, but some differences be-
tween the ODT and the reference results are notable.

On the upside, ODT is able to capture most of the relevant
flow features. In the logarithmic layer, ODT yields a von Kármán
constant for the passive scalar of κODT

θ
= 0.23±0.02. This value is

very close to the reference DNS/LES, which yield κDNS
θ

= 0.23±
0.04. This suggests that ODT is able to model the turbulent scalar
transport accurately in the logarithmic layer.

In particular, note that the mean scalar concentration (figure 3)
and the r.m.s. values (figure 4) obtained by ODT are in very good
agreement with the reference DNS/LES throughout the conduc-
tive sublayer. Consequently, the scalar mass transfer coefficient
K+ (figure 5) exhibits agreement between ODT and the reference
DNS/LES. The ODT results for K+ exhibit the power law K+ ∝ Sca

with the exponent aODT = −0.651± 0.011 for Schmidt numbers
Sc > 100. This is very close to the reference value alab = −0.704
obtained by laboratory measurements. This suggests that the near-
wall scalar transport and the near-wall scalar concentration are both
fairly accurately modeled by ODT.

On the downside, the scaled mean scalar concentration (fig-
ure 3) is systematically underestimated in ODT throughout the log-
arithmic layer by a factor of ≈ 3/4 in comparison to the reference
DNS/LES. In addition, the r.m.s. values (figure 4) obtained by ODT
are significantly lower than in the reference DNS/LES in the buffer
layer, say 1 < y+ < 10, where the logarithmic and the conductive
layer overlap. Both of the latter deficiencies hint at an inaccurate
representation of the buffer layer dynamics within stand-alone ODT.

This means that ODT is neither able to resolve nor to mimic crucial
3-D flow features (as shown, e.g., by Hasegawa & Kasagi, 2009).

In conclusion, we suggest that ODT exhibits less advective
transport across the buffer layer, which results in a lower mean
scalar concentration throughout the logarithmic layer. Due to conti-
nuity constraints on the scalar profile, diffusion is enhanced within
ODT to maintain a constant scalar mass flux across the channel.

It is worth to emphasize the numerical efficiency of ODT in
the light of the few deficiencies mentioned. The sum of the simu-
lations presented here took a total of ≈ 8500 CPU-h on a few local
workstations. This renders ODT an ideal tool for studying turbulent
transport in a wide range of control parameter values, here exempli-
fied by Sc encompassing about four orders of magnitude.

At last, we note that the limitations of stand-alone ODT with
respect to 3-D flow structure representation can be resolved by us-
ing ODT as efficient and accurate sub-grid scale model in an LES
framework: so-called ODTLES (e.g. Glawe et al., 2013; Glawe,
2015). Such an undertaking, however, is beyond the scope of this
study, but it seems worth to assess high-Sc turbulent scalar transport
with ODTLES in the future.
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