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ABSTRACT
A direct numerical simulation (DNS) study is carried

out to investigate the effects of compressibility in a planar
turbulent mixing layer. A high-order discontinuous spectral
element method is used for simulating such a compressible
flow. The region of laminar-turbulent transition is identified
using the frequency spectra and the vorticity characteristics.
The compressibility effects in the fully developed turbulent
mixing layer are examined by analyzing the autocorrelation
functions, the integral time scales, the frequency spectra,
and the growth rates of the momentum thickness along the
flow direction with different convective Mach numbers. The
results show that with increasing the convective Mach num-
ber, the autocorrelation decorrelates faster, the integral time
scale shortens, the peak of the spectrum is reduced, and the
mixing layer growth rate decreases.

INTRODUCTION
To understand the physics of many important flows, the

research on compressible turbulent mixing layer is essen-
tial. The simplest way for understanding a turbulent mixing
layer is to study the planar mixing layer, which is formed
between two parallel fluid streams with different velocities.
The effects of compressibility on turbulent mixing layers
are investigated in terms of the convective Mach number,
which is defined (Bogdanoff, 1983) as

Mc =
U1−U2

c1 + c2
. (1)

Here, U1 and U2 denote the velocities of the fluid in the
high- and low-speed streams, respectively; c1 and c2 denote
the speeds of sound in the high- and low-speed streams of
the mixing layer, respectively. According to the literature,
numerical studies on spatially developing turbulent mixing
layer are not abundant, very few of which focused on the
compressibility effects on the onsets of roll-up and pairing,
the spanwise vortices, and the shear layer growth rate. None
of the previous studies investigated the effects of compress-
ibility on the position of laminar-turbulence transition and
the single-point correlations.

In this work, a direct numerical simulation (DNS)
study is conducted to examine the compressibility effects on
the turbulent mixing layer. The compressible flow is simu-
lated by a discontinuous spectral element method (DSEM)
(Kopriva & Kolias, 1996; Kopriva, 1998; Jacobs et al.,
2005). This method has been used for the simulations of the
compressible flows in complex geometries (Li et al., 2016;
Ghiasi et al., 2016). The main objectives of this work are:
(1) to determine the region of laminar-turbulent transition;
(2) to identify the mechanism responsible for such transi-
tion; (3) to investigate the effects of compressibility on the
single-point correlations, the integral time scales, the fre-
quency spectra, and the momentum thickness.

METHODOLOGY
The full Navier-Stokes equations are employed as the

governing equations for the compressible turbulent mixing
layer. The vector form of the non-dimensional governing
equations can be expressed as

∂ ~Q
∂ t

+
∂~Fa

i
∂x j
−

∂~Fv
i

∂x j
= 0 , (2)

where ~Q is the solution vector; ~Fa
i and ~Fv

i are the advective
flux and viscous flux vectors, respectively (for more detail,
see Jacobs, 2003). The DSEM is employed to solve the
governing equations in a conservative form. The physical
domain is partitioned into non-overlapping elements. By
using isoparametric mapping, each element is mapped onto
a unit hexahedron over the interval [0,1]. Consequently, Eq.
(2) turns into

∂ Q̃
∂ t

+
∂ F̃a

i
∂X j
−

∂ F̃v
i

∂X j
= 0 (3)

where

Q̃ = J~Q , F̃a
i =

∂Xi

∂x j
~Fa

j , F̃v
i =

∂Xi

∂x j
~Fv

j . (4)
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In Eqs. (2)-(4), the solution vector ~Q and flux vectors ~F
are on the physical grid, while Q̃ and F̃ are on the mapped
grid. J represents the the determinant of the Jacobian ma-
trix, which transforms the elements from the physical space
to the mapped space. The term ∂Xi/∂x j denotes the trans-
formation matrix, while x j and Xi indicate the coordinates
of the physical space and the mapped space, respectively.

In each element, the solution vector Q̃ and the flux vec-
tors F̃i in Eq. (3) are calculated by a basis function on the
Gauss collocation points and Lobatto collocation points, de-
fined as

X j+1/2 =
1
2

{
1− cos

[
(2 j+1)π

2(p+1)

]}
, j = 0, · · · , p , (5)

and

X j =
1
2

{
1− cos

[
π j

p+1

]}
, j = 0, · · · , p+1 , (6)

respectively. Here, p represents the polynomial order of the
spectral element. The solution vector is approximated as

Q̃(X ,Y,Z) =
N−1

∑
i=0

N−1

∑
j=0

N−1

∑
k=0

Q̃i+1/2, j+1/2,k+1/2hi+1/2

(X) h j+1/2 (Y )hk+1/2 (Z) , (7)

and similarly for advective and viscous flux vectors (see
Jacobs, 2003). Here, X, Y, and Z denote the stream-
wise, cross-stream, and spanwise coordinates of the mapped
space, while hi+1/2, h j+1/2, and hk+1/2 are the Lagrange in-
terpolating polynomials on the Gauss grid. After the solu-
tion, advective flux, and viscous flux vectors are computed,
a fourth order Runge-Kutta method is adopted for time in-
tegration.

PROBLEM SETUP
The computational grid used in this work for the three-

dimensional (3D) compressible turbulent mixing layer sim-
ulations is shown in Fig. 1. The size of the computational
domain is listed in Table 1 with all dimensions normalized
by the initial shear layer momentum thickness, δθ (0). The
momentum thickness, δθ , in a spatial compressible mixing
layer, is defined (Jiménez, 2004) as

δθ =
1
ρo

∫ +∞

−∞

〈ρ〉{u}−U2

4U

(
1− {u}−U2

4U

)
dy . (8)

Here,4U =U1−U2; ρo denotes the initial inflow density;
〈ρ〉 and {u} denote the Reynolds-averaged density and the
Favre-averaged velocity, respectively.

The region used to study the flow properties for all
cases is 0≤ x≤ 1200. The rest of the domain is employed as
a buffer zone to avoid solution contamination from the out-
let boundary. The computational domain is discretized con-
tingent on the flow configuration. Such non-uniform grid
distribution is employed to ensure a finer grid in the mix-
ing layer as shown in Fig. 1, which is a two-dimensional
(2D) baseline grid on the x−y plane. This 2D baseline grid

Table 1. Lx, Ly, and Lz are the computational domain di-
mensions normalized by δθ (0), while Nx, Ny, and Nz indi-
cate the corresponding numbers of solution points for p= 5.

Lx×Ly×Lz Nx×Ny×Nz

1782×800×283 1098×204×66

is then extruded uniformly in the spanwise direction to con-
struct a 3D mesh, which consists of 68,442 elements. In this
study, two polynomial orders, p = 5 and 7, are employed,
resulting in a total of 14,783,472 and 35,042,304 solution
points, respectively.

Figure 1. Computational grid showing only elements.

The computational domain is bounded by the inflow
and outflow boundaries in the streamwise direction, the
non-reflecting boundaries in the cross-stream direction, and
the periodic boundaries in the spanwise direction. The
schematic of such setup is illustrated in Fig. 2. The bound-

Figure 2. The schematic of the computational domain.

ary layer inlet condition investigated by McMullan et al.
(2009) is used as inflow condition in this work. The free-
stream velocities in the high- and low-speed sides are set
to satisfy the velocity ratio, R = 0.54, for all simulations,
where R = (U1−U2)/(U1 +U2). The Reynolds number,
Reθ , based on 4U and δθ (0), is selected as 175, with
the consideration that it is small enough for resolving the
flow but large enough for the transition to turbulence. A
small turbulence intensity (less than 0.5% of the maximum
streamwise inlet velocity), generated by a stochastic model
(Gao & Mashayek, 2004), is superimposed on the inlet con-
dition. Density and temperature are uniformly initialized to
1.0 and (4U / 2Mc)

2, respectively. To damp any nonphys-
ical high wavenumber oscillations at the outlet boundary, a
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buffer zone near the boundary is employed and a damping-
sponge is accomplished by grid stretching.

VALIDATION AND CONVERGENCE STUDY
Three simulations are conducted with different inflow

Mach numbers and convective Mach numbers, as shown in
Table 2. The case Mc1 is selected as a reference case for
the baseline incompressible flow comparisons, since Mc =
0.1 is adequately small to consider the effects of compress-
ibility negligible. The spectral multidomain method allows
the spatial resolution to be adjusted in two ways: changing
the number of elements (h-refinement) and modifying the
polynomial order within an element (p-refinement). The h-
refinement gives an algebraic convergence rate, whereas an
exponential convergence rate is provided by p-refinement
(Karniadakis & Sherwin, 1999). Thus, a p-convergence
study is carried out for the baseline cases with two different
polynomial orders, p = 5 and 7. Our baseline DNS results
are then compared with computational and experimental re-
sults for incompressible mixing layer.

Table 2. Inflow Mach numbers in the high- and low-speed
sides are defined as M1 = U1/c1 and M2 = U2/c2, respec-
tively.

Case M1 M2 Mc

Mc1 0.2857 0.0857 0.1

Mc2 0.5704 0.1704 0.2

Mc3 0.8555 0.2556 0.3

To perform the comparison for the degree of self-
similarity, two profiles of the Favre-averaged streamwise
velocity, {u}, are extracted from two cross-stream lines (y-
line) at x = 667 and 1167, both located in the self-similar
turbulent region (See Fig. 6). The comparison with the ex-
perimental profile obtained by D’Ovidio (1998) is presented
in Fig. 3. In this figure, x0 and y0.5 are the origin of the
mixing layer and the lateral position at which the stream-
wise velocity approaches the value of convective velocity
in the cross-stream direction, respectively. The convective
velocity, Uc, is defined as Uc = (c2U1 + c1U2)/(c1 + c2).
Figure 3 shows the following: an excellent self-similarity is
achieved; a good agreement between the results from p = 5
and 7 is observed; the discrepancy between the results from
the present DNS and the previous experiment is small.

Figure 4 shows the similarity profiles of the streamwise
Reynolds stress compared against the results obtained by
other researchers. The peak of the normal stress is 0.0322
in the case with p = 5, 0.0320 with p = 7, 0.0310 in the ex-
perimental data obtained by D’Ovidio (1998), and 0.0283 in
the LES conducted by McMullan et al. (2009). The peaks
of the normal stress and the self-similar shapes are in good
agreement with both previous results. However, compared
to the result of McMullan et al. (2009), both results obtained
by the current study for p = 5 and 7 have better agreements
with the experimental result. Based on the above compar-
isons, it is concluded that the resolutions obtained with two
polynomial orders, p = 5 and 7, are both acceptable. There-
fore, the polynomial order used for further simulations is

Figure 3. Comparison of the profiles of the streamwise
mean velocity for different polynomial orders at two loca-
tions to the experimental results of D’Ovidio (1998).

Figure 4. Comparison of the similarity profiles of stream-
wise Reynolds stresses with LES of McMullan et al. (2009)
and experiment of D’Ovidio (1998).

taken as p = 5 with the consideration of the computational
cost.

LAMINAR-TURBULENT TRANSITION ZONE
To ensure the data used for analyzing the effects of

compressibility on the turbulent shear layer is extracted
from the self-similar turbulent region, the location of the
laminar-turbulent transition zone is needed to be identified.
In this work, the transition region is estimated by analyzing
the behavior of the frequency spectrum and the characteris-
tic of the instantaneous flow.

In a self-similar turbulent region, the velocity fre-
quency spectra display the power-law behavior with the ex-
ponent of −5/3 in the inertial subrange (Pope, 2000). The
streamwise velocity frequency spectrum is defined as

Eu ( f ) =
∫

∞

−∞

Ru (s)e−i2π f sds , (9)

where

Ru(s) = 〈u′(t)u′(t + s)〉 . (10)
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Here, f is the frequency; s and u
′

are the time lag and the
fluctuation of streamwise velocity, respectively. Ru(s) de-
notes the streamwise velocity autocovariance. In its nor-
malized form, the autocorrelation function of the stream-
wise velocity is

ϒu(s) =
Ru(s)
〈u′2(t)〉

, (11)

similarly for ϒv and ϒw, which are the autocorrelation func-
tions of cross-stream and spanwise velocity components.

Figure 5 shows the frequency spectra of the streamwise
velocity at four locations listed in Table 3. At probe A, the
behavior of the frequency spectrum reflects the fundamental
Kelvin-Helmholtz instability, and therefore the flow is not
turbulent in this region. As the flow proceeds downstream
to probes B, C, and D, the exponent of the spectrum in the
roll-off converges towards the exponent of -5/3, indicating
that the flow is in transition to turbulence.

Table 3. Locations of four probes along the centerline of
the mixing layer.

Probe A B C D

x 113 339 565 791

Figure 5. Frequency spectra of streamwise velocity at dif-
ferent locations.

The contours of the spanwise vorticity with convective
Mach number of Mc = 0.1 are shown in Fig. 6. It is seen that
the large coherent vortices emerge at x≈ 100, then interact
mutually toward downstream, and eventually breakdown to
small-scale structures at approximately 300≤ x≤ 600. The
region 100 < x < 600 is indicated by white dashed line,
which approximates the zone of the laminar-turbulent tran-
sition.

Ho & Huang (1982) proposed that the formation of
secondary streamwise vortices and the breakdown of pri-
mary spanwise vortices are responsible for the onset of tur-

Figure 6. Contours of the spanwise vorticity in the case
with Mc = 0.1.

bulence transition. In this context, we consider a 3D repre-
sentation of turbulent structures via an iso-surface and vol-
ume rendering technique, which is shown in Fig. 7. The
2D primary spanwise coherent structures can be seen in
100 < x < 300 in the mixing layer. In the braid region, the
3D secondary streamwise vortex structures emerge along
with the primary coherent structures. These secondary
streamwise vortices then stretch the primary spanwise vor-
tices to breakdown into small-scale structures, roughly in
the region 300< x< 600. These observations are consistent
with the study by Pierrehumbert & Widnall (1982), suggest-
ing that the mutual interaction between 2D and 3D instabil-
ities significantly facilitates the transition from laminar to
turbulence in mixing layers and thus leads to a self-similar
turbulent state. This process is the primary mechanism ac-
counting for both the formation of the vortex structures and
the transition to turbulence. Hence, the entire turbulence
transition is roughly in the region of 100 < x < 600.

Figure 7. Iso-surface of vorticity magnitude colored by
the streamwise velocity.

COMPRESSIBILITY EFFECT IN TURBULENT
MIXING LAYER

The effects of convective Mach number are studied
through the analysis of the autocorrelation functions, the
integral time scales, the frequency spectra, and the growth
rates of the momentum thickness along the streamwise di-
rection with different convective Mach numbers.

Autocorrelation Functions and Integral Time
Scales

Figure 8 shows the autocorrelation functions of the
streamwise, cross-stream, and spanwise velocities at x =
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719 on the centerline of the mixing layer for various convec-
tive Mach numbers. For the same convective Mach number,
the autocorrelation functions of all three velocity compo-
nents display a similar trend. The case with high convec-
tive Mach number, Mc = 0.3, shows a steeper roll-off in
the autocorrelation function (faster decay to zero) than does
the case with the low convective Mach number, Mc = 0.1.
A steep roll-off of the autocorrelation function denotes the
high-frequency velocity fluctuations, which are directly re-
lated to the smallest-scale vortex structures, and vice versa.

Figure 8. Autocorrelation functions of (a) streamwise ve-
locity, (b) cross-stream velocity, and (c) spanwise velocity,
for various convective Mach numbers.

The longest connection in the turbulent behavior over
time can be measured via the integral time scale, defined as

τu =
∫

∞

0
ϒu (s)ds , (12)

and similarly for τv and τw. Here, τu, τv, and τw denote the
integral time scales of u, v and w velocity fluctuations, re-
spectively. The integral time scales for the cases with differ-
ent convective Mach numbers are presented in Fig. 9. This
figure indicates that with increasing the convective Mach
number, the integral time scale decreases. Therefore, it can
be deduced that at any stationary planar turbulent mixing
layer, an increase in the convective Mach number may lead
to a reduction in the sizes of largest-scale structures. Also,
Fig. 9 shows that the magnitudes of τv and τw are nearly
identical, and that both the ratios of τu/τv and τu/τw are
approximately equal to 2.

Frequency Spectra
The frequency spectra of the streamwise velocity at

x = 719 on the centerline of the mixing layer for different
convective Mach numbers are shown in Fig. 10. It can be
seen that in the roll-off of the spectra, all of them show the
power-law behavior with the exponent of −5/3. However,
this power-law behavior appears sooner (at the lower fre-
quency range) for the low convective Mach number case,
Mc = 0.1, than that for the high convective Mach number
case, Mc = 0.3. Also, as the convective Mach number in-
creases, the peak of the spectrum decreases. This finding

Figure 9. Integral times-cales for different convective
Mach numbers.

is consistent with those results shown in Fig. 9. Observa-
tions from both Figs. 9 and 10 indicate that an increase in
Mc leads to a decrease in the sizes of the largest-scale struc-
tures.

Figure 10. Frequency spectra of the streamwise velocity
for different convective Mach numbers.

Growth of Momentum Thickness
Figure 11 presents the evolution of the momentum

thickness δθ (x) along the streamwise direction for differ-
ent convective Mach numbers. For better comparison, lin-
ear trendlines are also included for the self-similar turbu-
lent region for three cases. The growth rates of the mo-
mentum thickness in the self-similar turbulent region are
computed as 0.0239, 0.0198, and 0.0173 for the correspond-
ing convective Mach numbers of 0.1, 0.2, and 0.3, respec-
tively. It is concluded that as the convective Mach num-
ber increases, the growth rate of the momentum thickness
decreases. This observation is consistent with the exper-
imental results from Papamoschou & Roshko (1988) and
Goebel & Dutton (1991). It has also been suggested that
the slow growth of the mixing layer occurs at higher con-
vective Mach numbers mainly due to the reduced growth
rate of linear instability (Lele, 1989).
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Figure 11. Evolution of the momentum thickness for dif-
ferent convective Mach numbers.

CONCLUSIONS AND FUTURE WORK
Direct numerical simulations have been conducted for

spatially developing plane turbulent mixing layer, employ-
ing a high-order discontinuous spectral element method.
The laminar-turbulent transition occurs within the compu-
tational domain, and the region of the transition is approxi-
mated by analyzing the behaviors of frequency spectra and
the scales of the vortex structures. The mechanism respon-
sible for the production of small-scale vortex structures is
the spanwise stretching driven by the secondary streamwise
vortices. Compressibility effects on the fully developed tur-
bulent mixing layer are investigated via the autocorrelation
functions, the integral time scales, the frequency spectra,
and the momentum thickness growth rates. As the convec-
tive Mach number increases, the autocorrelation decorre-
lates faster, the integral time scale shortens, the maximum
of the spectrum is reduced, and the mixing layer growth rate
decreases.

For future work, we plan to further investigate the ef-
fect of compressibility on the location and length of the tur-
bulent transition zone by analyzing the flow properties in
the transition region, such as normal Reynolds stress and
the budget terms of turbulent kinetic energy.
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