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ABSTRACT
The detailed dynamics of small particles and droplets

in turbulent flows are not directly accessible in standard
large-eddy simulations because the relevant small-scale
physics is unresolved. This paper aims to demonstrate
a technique for recovering unresolved velocity gradients
along Lagrangian paths, which are important for a num-
ber of micro-physical applications. Stochastic models pre-
viously used for Lagrangian velocity gradients in isotropic
turbulence are adapted to work alongside large-eddy simu-
lations under the assumption that the unresolved turbulence
is approximately locally isotropic. The technique is demon-
strated for a turbulent channel flow by explicitly filtering
a DNS simulation at Reτ = 1000 from the Johns Hopkins
Turbulence Databases for use as a ‘perfect LES’ solution.
The results of the stochastic model are then compared to
particle tracking results from the full DNS solution. This
demonstrates that the stochastic models developed for La-
grangian velocity gradients in isotropic turbulence can be
implemented as a practical tool for large-eddy simulations
in a wide range of engineering and geophysical flows.

INTRODUCTION
Standard large-eddy simulation (LES) techniques aim

to accurately simulate a coarse-grained representation of a
given high-Reynolds-number turbulent flow (Sagaut, 2006).
Knowledge of the fine-scale structure of turbulence is re-
quired by many scientific and engineering problems, such as
particle dispersion (Sawford, 2001), preferential concentra-
tion (Maxey, 1987), polymer stretching (White & Mungal,
2008), droplet and bubble deformation (Maffettone & Mi-
nale, 1998), rigid particle rotation (Voth & Soldati, 2017),
aggregate break-up (Marchioli & Soldati, 2015), microor-
ganism nutrient uptake (Karp-Boss et al., 1996), and hemol-
ysis (De Tullio et al., 2012).

Some modeling work has been done for simulating par-
ticle dispersion in the context of LES by using stochastic
models (Mazzitelli et al., 2014) or differential filter decon-
volution methods (Park et al., 2015) for mimicking the sub-
grid scale velocity fluctuations. Little previous work has
focused on recovering unresolved velocity gradients, a no-
table exception being the recent work of Chen et al. (2016),
who used an Ornstein-Uhlenbeck model for velocity gra-
dient statistics (Pumir & Wilkinson, 2011), which assumes
Gaussian statistics for the gradients. At high Reynolds num-

bers, unresolved velocity gradients are highly non-Gaussian
and of much larger in magnitude compared to resolved ve-
locity gradients, which makes it imperative for additional
modeling even for qualitative order-of-magnitude success.

Under the long-standing hypothesis of approximate
universality and local isotropy of small-scale turbulence
at high Reynolds numbers and far from boundaries (Kol-
mogorov, 1941; Sreenivasan & Antonia, 1997; Pope, 2000),
it is expected that accurate modeling of Lagrangian velocity
gradients in isotropic turbulence can serve as a basis for a
wide range of inhomogeneous flows. Early investigations
of the restricted Euler model for Lagrangian velocity gra-
dient dynamics (Vieillefosse, 1982, 1984; Cantwell, 1992)
showed that the non-linear self-amplification term with a lo-
cal, isotropic pressure Hessian accounted for many of the
important qualitative features of turbulent velocity gradi-
ents, such as the enhanced probability of extreme excur-
sions down the Vieillefosse tail in the Q-R plane and the
preferential alignment of the vorticity with the strain-rate
eigenvector associated with its intermediate eigenvalue, al-
though it diverges at later time due to a finite-time singu-
larity . While the linear damping closure of Martin et al.
(1998) failed to prevent this singularity for some initial con-
ditions, further modeling work (Jeong & Girimaji, 2003;
Chevillard & Meneveau, 2006) leveraged techniques devel-
oped for tetrad dispersion models (Chertkov et al., 1999) to
demonstrate the capability of stochastic models with recent-
deformation closures to provide realistic stationary statis-
tics. For a review, see Meneveau (2011). Further improve-
ments were made recently by the introduction of a Gaussian
fields closure (Wilczek & Meneveau, 2014) and by a frame-
work for closure based on deformation of Gaussian fields
from (Johnson & Meneveau, 2016).

In this paper, we construct a Lagrangian stochastic
model for the sub-grid velocity gradients from the filtered
Navier-Stokes equations. Unclosed terms, such as the pres-
sure Hessian and viscous Laplacian, are treated with models
that have been developed for accuracy in isotropic turbu-
lence (Johnson & Meneveau, 2016), under the hypothesis
of approximate universality and local isotropy for small-
scale turbulence at high Reynolds numbers. The method
is demonstrated by considering the velocity gradients along
Lagrangian trajectories in a turbulent channel flow using a
DNS database solution.
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MODEL DEVELOPMENT
Governing Equations

We consider the low-pass filtering operation with filter
width ∆,

ũi(x) =
∫∫∫

G(r;∆)ui(x+ r)d3r, (1)

decomposing the velocity field into large-scale and small-
scale contributions: ui = ũi+u′i. Applying the filter operator
on the incompressible Navier-Stokes equations leads to the
large-eddy simulation equations,

∂t ũi + ũ j∂ jũi =−∂i p̃+ν∇
2ũi−∂ jσi j, (2)

together with the incompressibility condition, ∂iũi = 0,
where σi j = ũiu j − ũiũ j and spatial variation of the filter
width is ignored.

We consider the Lagrangian evolution of velocity gra-
dients given by the gradient of the incompressible Navier-
Stokes equations,

d
dt Ai j =−AikAk j−∂i∂ j p+ν∇

2Ai j, (3)

where d
dt = ∂t + u j∂ j is the material derivative. The gradi-

ent of the filtered incompressible Navier-Stokes equations
gives,

d
dt Ãi j =−ÃikÃk j−∂i∂ j p̃+ν∇

2Ãi j−∂ j∂kσik +u′k∂kÃi j,
(4)

and the remaining unresolved velocity gradient has the evo-
lution equation,

d
dt A′i j =−A′ikA′k j−∂i∂ j p′+ν∇

2A′i j

−A′ikÃk j + ÃikA′k j +∂ j∂kσik−u′k∂kÃi j. (5)

In the limit of high sub-grid Reynolds num-
ber, ReSGS =

√
15σii/

√
νε ∼ τ∆/τ ′η � 1, where τ ′η =

1/
√

2〈S′i jS
′
i j〉 and τ∆ = 1/

√
2〈S̃i jS̃i j〉, the Kolmogorov

timescale, τη = 1/
√

2〈Si jSi j〉 ≈ τ ′η , roughly describes the
(inverse) magnitude of the unresolved velocity gradients,
and the equation for the unresolved velocity gradients can
be approximated by the dominant contributions from (5),

d
dt A′i j =−A′ikA′k j−∂i∂ j p′+ν∇

2A′i j, (6)

which is equivalent to the (3) for the total velocity gradi-
ent, thus allowing the direct use of models developed for
the total velocity gradient in isotropic turbulence as an ap-
proximations for the unresolved velocity gradients.

Stochastic Model
The recent deformation of Gaussian fields (RDGF)

stochastic model of Johnson & Meneveau (2016) is used
to simulate the unresolved velocity gradients,

dA′i j =
(
−A′ikA′k j−Pi j +Vi j

)
dt +dFi j, (7)

where Pi j = 〈∂i∂ j p′|A′〉 and Vi j = ν〈∇2A′i j|A′〉 represent
the RDGF closure approximations in statistically station-
ary isotropic turbulence. These conditional averages are
computed by treating the pressure p′ and A′ as slowly vary-
ing (approximately constant for a short time τ ∼ τ ′η ) along
the Lagrangian trajectory, which determines the closure in
terms of an upstream (‘initial condition’) closure and a
short-time fluid deformation tensor given by the matrix ex-
ponential D−1

i j = [exp(−A′τ)]i j. The RDGF closures for
the conditional means are,

Pi j = −
C−1

i j

C−1
kk

tr
(

A′2
)
−
(

Gi j−
C−1

i j

C−1
kk

tr(G)

)
, (8)

Vi j = δ (T ′i jC
−1
kk +2T ′ikB−1

k j −
4

21
B−1

ik S′k j−
2

21
B−1

k` S′k`δi j),

where the Gaussian fields calculation for the pressure Hes-
sians enters through Gi j = D−1

mi Ĝi jD−1
n j , where,

Ĝi j = α
(
S′mkS′kn− 1

3 S′k`S
′
`kδmn

)

+β
(
Ω
′
mkΩ

′
kn− 1

3 Ω
′
k`Ω
′
`kδmn

)

+γ
(
S′mkΩ

′
kn−Ω

′
mkS′kn

)
. (9)

The coefficients for Ĝ come from the Gaussian fields
model: α = −2/7, β = −2/5, γ = 86/1365, δ =
−(7Ckk)/(30

√
15τ ′η )≈−0.06Ckk/τ ′η . In the above expres-

sions, the strain-rate S′i j =
(

A′i j +A′ji
)
/2 and rotation-rate

Ω′i j =
(

A′i j−A′ji
)
/2 are used along with the mixed ten-

sor T ′i j =
(

23A′i j +2A′ji
)
/105. The recent deformation en-

ters through the left and right inverse Cauchy-Green tensors,
C−1

i j = D−1
ki D−1

k j and B−1
i j = D−1

ik D−1
jk .

The stochastic noise, dFi j = bi jk`dWk`, uses a tensorial
Wiener process characterized by zero mean and white-in-
time correlation, i.e. 〈dWi j〉= 0 and 〈dWi jdWk`〉= δikδ j`dt.
The forcing is constrained to be isotropic and trace-free,
with the resulting form,

bi jk` = −
1
3

√
Ds

5
δi jδk`+

1
2

(√
Ds

5
+

√
Da

3

)
δikδ j`

+
1
2

(√
Ds

5
−
√

Da

3

)
δi`δ jk. (10)

The forcing coefficients Ds and Da represent the diffusive
growth rates for the symmetric and anti-symmetric part of
the velocity gradient tensor caused by the forcing term,
respectively. The three model parameters τ = 0.1302τ ′η ,
Ds = 0.1014/τ ′3η , and Da = 0.0505/τ ′3η are fixed by consid-
ering three exact constraints for homogeneous turbulence,
namely, 2〈S′i jS

′
i j〉 = τ

′−2
η , 〈Q′〉 = 0, 〈R′〉 = 0. Note that

the Gaussian closure depends in various ways on the Kol-
mogorov timescale, τ ′η which is a ‘user input’, i.e., the
model can be run at any arbitrary τ ′η . More details on the de-
velopment of the RDGF model described above have been
given by Johnson & Meneveau (2016).

Determining the Dissipation Rate
Because τ ′η is a required input to the model, it must be

determined from the coarse-grained field in the context of
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LES. To that end, we employ a simple phenomenological
model for the local dissipation rate along Lagrangian paths,

dε

dt
=

Π− ε

τε

, (11)

where Π = −σi jS̃i j is the production rate for sub-grid ki-
netic energy. This model is motivated by observations
of the Lagrangian nature of the turbulent cascade (Mene-
veau & Lund, 1994; Wan et al., 2010). The Lagrangian
cascade timescale is established dimensionally: τ

−1
ε =

Cε ε1/3(Cs∆)
−2/3, where Cε = 0.5 gives satisfactory results.

In this paper, the SGS production, Π = −σi jS̃i j, is es-
timated using a Smagorinsky model (Smagorinsky, 1963)

σi j =−2(Cs∆)
2|S̃|Si j, where |S̃|=

√
2S̃i jS̃i j, so

Π = (Cs∆)
2|S̃|3. (12)

In (11), ε is not necessarily a local value of dissipa-
tion but could be interpreted as the filtered dissipation rate
ε(x) = 2ν

∫∫∫
G(r;∆)|S′|2(x+r)d3r, which for a top-hat fil-

ter corresponds to the locally-averaged dissipation rate used
in K62 phenomenology (Kolmogorov, 1962; Oboukhov,
1962). More strictly speaking, it functions as a time-
dependent ensemble averaged dissipation given S̃(t) along
a trajectory. Along a trajectory, the simple update formula

εn+1 = αεn +(1−α)Πn+1, (13)

is used to solve (11), where α =[
1+Cε

(
εn/(Cs∆)

2)1/3
∆t
]−1

. The input to the stochastic

model for velocity gradients then uses τ ′η =
√

ν/ε , which
changes in time along the trajectories.

Unsteady Consistency Constraint
Within this framework, the Kolmogorov timescale that

the stochastic model sees will, in general, vary with time
along each trajectory. Therefore, the model requires a
slight adjustment to extend the consistency constraint, i.e.
〈S′i jS

′
i j〉τ ′2η = 1/2, to the case of unsteady Kolmogorov

timescale, i.e. dτ ′η/dt 6= 0. This can be done in a straight-
forward way which is applicable to any stochastic model
which satisfies the consistency constraint for steady τ ′η .

Satisfaction of the consistency constraint for steady τ ′η
implies that the dimensionless form of the model,

dA∗i j =
(
−A∗ikA∗k j−P∗i j +V ∗i j

)
dt∗+b∗i jk`dW ∗k`, (14)

satisfies the constraint 2〈S∗i jS
∗
i j〉 = 1, where A∗i j = Ai jτη ,

P∗i j = P∗i jτ
2
η , V ∗i j =Vi jτ

2
η , dt∗ = dt/τη , b∗i jk` = bi jk`τ

3/2
η , and

dW ∗i j = dWi j/τ
1/2
η . An expedient method for extending the

consistency constraint to unsteady Kolmogorov timescale
is to simply allow τη be time-dependent in (14), thus gen-
erating an extra term by the product rule dA∗i j = τη dAi j +
Ai jdτη . The resulting dimensional equation is then

dA′i j =

(
−A′ikA′k j−Pi j +Vi j−

1
τ ′η

dτ ′η
dt

A′i j

)
dt +dFi j.

(15)

The added linear term provides damping when τ ′η increase
(dissipation locally decreasing) and amplification when τ ′η
is decreasing (dissipation locally increasing) such that the
model remains consistent with the definition of the local
Kolmogorov timescale. This terms maintains consistency
with derivation from the Navier-Stokes equations if we con-
sider the closure approximation to be

−〈∂i∂ j p′|A′〉+ν〈∇2A′i j|A′〉=−Pi j +Vi j−
1

τ ′η

dτ ′η
dt

A′i j,

(16)
which is consistent with the stationary isotropic turbulence
models for dτ ′η/dt = 0. Thus, the new term does not rep-
resent new physics, but only a practical extension of the
model’s constraints to the case of unsteady τ ′η .

NUMERICAL DETAILS
Channel Flow DNS and Filtering

The JHTDB channel flow dataset comes from a Navier-
Stokes simulation in wall-normal velocity-vorticity form
(Kim et al., 1987) using a pseudo-spectral method in the
horizontal plane and a seventh-order B-splines collocation
method in the wall-normal direction (Lee et al., 2013; Gra-
ham et al., 2016). Every 5th timestep was written to disk for
a total of 4000 snapshots, about one domain flow-through
time. The simulation domain size was 8π × 2× 3π with
a resolution of 2048× 512× 1536 in the streamwise (x),
wall-normal (y), and spanwise (z) directions respectively.
A third-order low-storage Runge-Kutta method was used
for time advancement with 2/3 truncation for de-aliasing
(Orszag, 1971). Table 1 includes some details about the
channel flow simulation, and more details can be found in
the references herein.

Table 1. Details for the 2048× 512× 1536 channel flow
dataset at Reτ = 1000 used here (Graham et al., 2016).

h ν u∗ Ubulk δx+ δ z+ δ t

1 5e-5 5e-2 1.00 12.3 6.1 1.3e-3

To mimic a large-eddy simulation, the DNS channel
flow database was filtered using a trapezoidal rule box filter
of size 32 times the grid spacing, i.e. ∆x = 32δx and sim-
ilar for y and z. The filter width for the model is specified
as ∆ =

(
∆x∆y∆z

)1/3. The filtered data was stored on a grid
16 times as coarse in each direction, including 16 times as
coarse in time. The size of the coarse-grained dataset was
thus 128× 32× 96 with 250 timesteps. This reduced the
volume of the dataset by a factor of 216, from ∼ 100 TB
to ∼ 1 GB, which was stored on a local desktop computer
for analysis. The first grid point off the wall was at y+ ≈ 8
in the filtered dataset, which would be difficult in practice
for a large-eddy simulation to imitate. Because the original
DNS grid was non-uniform in the wall-normal direction, the
technique used here resulted in a non-uniform grid for the
filtered dataset as well as a slight spatial dependence of the
filter kernel, which is ignored for convenience in the gov-
erning equations. Figure 1 shows the unfiltered and filtered
velocity fields from the centerplane of the channel.
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Figure 1. Colormaps of instantaneous streamwise velocity
on the centerplane of the channel flow from full DNS (left)
and coarse-grained DNS (right).

Stochastic Model
The stochastic model was computed using a second-

order accurate predictor-corrector method. The time step
taken was δ t = 0.0065, which is 5 times the DNS simu-
lation timestep and about 1/100th of the centerline Kol-
mogorov timescale. Coarse-grained velocity gradients from
the filtered database, used for determining τ ′η , were com-
puted using second-order central differencing with tri-linear
spatial interpolation and linear temporal interpolation.

The Smagorinsky coefficient Cs was given a fixed
value depending on wall normal distance (Porté-Agel et al.,

2000), Cs =Cs,0/

√
1+
(
(Cs,0∆)/(κy)

)2, where κ = 0.41 is
used for the Karman constant. The model with the choice
Cs,0 = 0.19 was found to accurately reproduce profiles of
〈Π|y〉 when compared with the SGS production computed
from filtering the DNS database. For this low-Re case,
we use a non-equilibrium correction replacing Π from (12)
with Cneq(y)Π before substituting into (13). The low-Re
correction factor is determined from the DNS results as
Cneq(y) = 〈ε|y〉/〈Π|y〉 so that energy is injected into small
scale dynamics with the correct wall-normal profile. In
practice, for higher Re simulations, such a correction is ex-
pected to be small, Cneq ≈ 1. Alternatively, a more sophis-
ticated model than (11) for ε could be developed for more
complex flows in future studies.

Particle Initial Conditions
To demonstrate the proposed stochastic model for the

unresolved velocity gradients, we wish to avoid the near-
wall region as much as possible, because additional mod-
eling (a topic not pursued in this paper) will be necessary
there. For this reason, 43200 Lagrangian tracer particles
are released at random (x,z) position at the channel center
at t = 0. Over the course of time, they disperse from the
low dissipation region in the center into regions of increas-
ing velocity gradient strengths closer to the walls. Ensem-
ble statistics, including those conditioned on wall-normal
position and time, are used to judge the accuracy of the pro-
posed model. Prior to releasing the particles, the velocity
gradient stochastic model is initialized with Gaussian statis-

tics having the correct τ ′η and given a start-up run time of
1000 timesteps before t = 0 for which they have a constant
τ ′η equal to the value at t = 0. The initial value of τ ′η is
determined assuming a balance of production and dissipa-
tion, but correcting for the low-Re non-equilibrium effect:
ε(t = 0) =Cneq(y = 0)Π(t = 0).

RESULTS
We first check to see if the proposed model can cor-

rectly account for the variation of velocity gradient magni-
tudes in space and time as the particles disperse from the
centerline of the channel. Figure 2 shows as a function of
time the dissipation timescale, τη =

√
ν/〈ε〉, where brack-

ets denote ensemble averaging over all trajectories regard-
less of wall-normal location. It is evident that the stochastic
model provides good agreement in terms of the magnitude
of velocity gradients produced, which validates the use of
Π from the Smagorinsky model with (11) to determine the
local dissipation rate, with the help of tuning Cs,0 = 0.19 as
well as the low-Re non-equilibrium correction using DNS.
The local maximum in timescale (minimum in dissipation
rate) near t = 5 which appears in the DNS data (dashed line)
is captured by the model, where setting the factor Cε = 0.5
for (11) is important for correctly capturing this effect. The
timescale drops as time continues, however, because the
particles move closer to the wall and experience regions of
more intense turbulence (higher dissipation rate).

0 5 10 15 20 25 30

t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

τ η
=

√
ν
/〈
ǫ〉

Figure 2. Comparison of DNS Kolmogorov timescale for
total dissipation (blue line) with Kolmogorov timescale us-
ing (11) for unresolved dissipation (green), RDGF stochas-
tic model timescale (black dashed), and total filtered DNS
+ RDGF timescale (black solid).

To explore the spatial dependence of velocity gradi-
ent magnitudes, Figure 3 shows Kolmogorov timescales,
τη (y) =

√
ν/〈ε|y〉, constructed using the dissipation av-

eraged over the trajectory ensemble conditionally on wall-
normal position. Two different times are shown: t = 11.7
and t = 23.4. At the first time, a few particles have started
to reach the wall while most remain in the bulk of the chan-
nel. The second time is close to the end of the DNS data,
where particles are closer to a uniform distribution. Near
the centerline, the lower turbulence intensities lead to lower
velocity gradient magnitudes while the velocity gradients
are more intense approaching either walls.

Now that the magnitude of the velocity gradient tensor
fluctuations has been shown to be accurately reproduced,
we exploit a unique benefit of the stochastic model to ex-
plore the tensorial structure of the full velocity gradient. In
the following discussion, statistics taken over the trajecto-
ries for the entire time of the simulation are considered so
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Figure 3. Particle density (top) and Kolmogorov timescale
(bottom) as a function of y using conditionally averaged
dissipation 〈ε|y〉, at time t = 11.7 (left) and time t = 23.4
(right). For τη (y), dashed (black) lines represent DNS re-
sults and solid (blue) lines those of the stochastic model.

to aid statistical convergence.
Figure 4 compares the results of the stochastic model

with DNS statistics for the PDF in Q-R space. The statis-
tics for these plots are taken over the whole ensemble
for all timesteps as the particles spread out from the cen-
terline of the channel. The characteristic teardrop shape
from isotropic turbulence is evident in both results, and the
stochastic model provides an excellent match to the DNS
results. This shows that the unique statistical signature of
velocity gradient tensor invariants is captured by the model.
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Figure 4. Logarithmically spaced iso-contours (101, 100,
10−1, 10−2, 10−3) of the joint-PDF in Q-R space for trajec-
tory ensemble in channel flow using DNS (left) and filtered
DNS with RDGF (right).

The probability distributions of dissipation and enstro-
phy are shown in Figure 5. For both of these two quan-
tities, the model results display the well-known stretched-
exponential form with slightly over-predicted probabilities
in the tails. Nonetheless, the agreement is quite good be-
tween the model and DNS. Figure 6 shows alignment statis-
tics for the velocity gradient tensor. The left plot com-
pares the alignments for the vorticity vector with the three
strain-rate eigenvectors, arranged in decreasing order ac-
cording to their associated eigenvalue. The DNS trends
are well-represented by the stochastic model, including the
alignment with the intermediate eigenvalue, anti-alignment
with the compressive eigenvalue, and approximately uni-
form PDF with the stretching direction. The PDF of s∗ =

0 5 10 15 20 25 30 35 40 45
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Figure 5. PDFs of dissipation (left) and enstrophy (right)
normalized by their mean values. Solid lines show stochas-
tic model results, dashed lines show DNS results.
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Figure 6. PDFs of alignment between vorticity and strain-
rate eigenvalues (left) as well as of s∗ (right). Solid lines in-
dicate stochastic model results and dashed lines show DNS
results.
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3
)3/2 is shown on the right.

Again, excellent agreement is seen between DNS and the
stochastic model. Figure 7 shows the PDF for individ-
ual components of the velocity gradient tensor. Stretched-
exponential tails are seen for both DNS and the stochastic
model. As with the dissipation and enstrophy PDFs, the
stochastic model only slightly over-predicts the probabili-
ties of rare events and the overall agreement is quite good.

DISCUSSION
The paper introduces the use of stochastic models for

Lagrangian velocity gradients in isotropic turbulence as
a means for accessing small-scale statistics in a coarse-
grained simulation. The approach is demonstrated using
a filtered DNS database of a turbulent channel flow with
Lagrangian tracers released from the centerline of the chan-
nel and dispersing toward the walls. The Recent Deforma-
tion of Gaussian Fields (RDGF) closure is used to simu-
late the dynamics of the velocity gradient tensor. To use
this approach with LES, it is necessary to provide a lo-
cal dissipation timescale from the information available in
the coarse-grained field. For an a priori evaluation of the
RDGF closure in a channel flow, the simple time-filtered
model, (11), suffices provided some information from the
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DNS. This is the key ingredient for matching velocity gra-
dient magnitudes, i.e. obtaining a reliable estimate of local
dissipation rate from the coarse-grained field. The approach
here, validated in Figures 2 and 3 relies on tuning Cε = 0.5
(which may or may not work well for other flows) as well
as a DNS-informed local non-equilibrium correction for
〈Π|y〉 6= 〈ε|y〉. It is likely that the non-equilibrium correc-
tion is less necessary at higher Reynolds numbers. Nonethe-
less, an alternative approach using a transport equation for ε

could be constructed similar to k-ε models for RANS simu-
lations, perhaps providing more fidelity than (11) without a
non-equilibrium correction. Once this is accomplished, the
results in Figures 4-7 illustrate the both the fidelity of the
stochastic model for the velocity gradient and the similarity
between velocity gradient statistics in the channel flow with
isotropic turbulence.
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