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ABSTRACT
The fine and large–scale properties in spatially developing uni-

formly sheared flow (USF) and USF distorted by a square–mesh
grid was examined experimentally using one– and two–point, two–
component hot–wire anemometry. We confirmed previous findings
that USF has an intermediate region where the dissipation parame-
ter scales with the local turbulent Reynolds number as Cε ∝ Re−0.6

λ

and a far downstream region, where Cε ≈ const.. The insertion
of a grid across the USF resulted in the creation of multi-structure
turbulence and a permanent reduction of kinetic energy and length
scales of the turbulence. Near the grid the dissipation parameter
scaled as Cε ∝ Re−1

λ
, as in decaying grid turbulence, despite the

opposite evolution rates of the kinetic energy (and Reλ ) in the two
flows. The turbulence fine structure within this multi–structure re-
gion was unaffected significantly by the grid, whereas the large–
scale anisotropy was markedly changed by the grid. Second–order
structure functions, normalised by Kolmogorov scales, collapsed in
the viscous sub–range, as well as for the largest measured separa-
tions. Within the inertial sub–range, however, the effects of grid
insertion were measurable.

INTRODUCTION
Of central importance in turbulence research is the Richardson-

Kolmogorov energy cascade postulate, which predicts the exis-
tence of a −5/3 range in the kinetic energy spectrum (Tennekes
& Lumley, 1972; Pope, 2000). This theory, as well as derivations
of far-field scaling laws for canonical turbulent flows (Townsend,
1980), have uniformly assumed that the dissipation parameter Cε =
εL/(2k/3)3/2 (k is the turbulent kinetic energy per unit mass, ε is its
dissipation rate and L is the integral length scale) is approximately
constant (Batchelor, 1953). The same assumption is also pivotal
for the derivation of turbulence models used to enforce closure of
the Reynolds-averaged Navier-Stokes (RANS) equations (Launder
& Spalding, 1972), subgrid-scale models for large-eddy simulations
(LES) (Meneveau & Katz, 2000; Piomelli, 2014), expressions pre-
dicting turbulent dispersion of scalars (Tavoularis & Nedić, 2017)
as well as for the estimation of computer resources for direct nu-
merical simulations (DNS) (Launder & Spalding, 1972; Vassilicos,
2015). The constancy of Cε is in turn based on the assumption
that the turbulence structure is well developed and evolves in a self-
similar manner. Nevertheless, most natural and technological flows
are unlikely ever to reach a state of full self-similarity, or may do so
far away from their origins, beyond the domain of practical inter-
est. The formulation of a universal theory of developing turbulence
is an unattainable goal, not only because of the structural differ-
ences among different types of turbulence but also because even a
flow on its way to full development may undergo several stages, in
each of which the dynamics of development of different parameters
could be different. In fact, there is currently a growing body of ev-
idence that specific canonical turbulent flows have not only a state
in which Cε ≈ const. along mean streamlines, but also one or more
other states in which this parameter may be scaled by local condi-

tions. More specifically, Cε has been expressed as a power func-
tion Cε ∝ Reα

λ
of the local Reynolds number Reλ = (2k/3)1/2λ/ν ,

in which ν is the kinematic viscosity and λ is the Taylor mi-
croscale, related to the other parameters by λ =

√
10νk/ε . Flows

with known power-law regions include grid turbulence (Vassilicos,
2015), axisymmetric wakes (Nedić et al., 2013), uniformly sheared
flows (USF) (Nedić & Tavoularis, 2016) and constant-pressure tur-
bulent boundary layers (Nedić et al., 2017).

A common characteristic of earlier studies has been that their
interest focussed on the transformation of the structure of a spe-
cific canonical flow from an initial, apparatus-dependent state to
its Cε ≈ const. state, in which all turbulence properties, including
k,ε and L grew at commensurate rates. Although initial states gen-
erated by apparatus with different specifications were examined in
some grid turbulence studies, none of the previously mentioned ref-
erences describes a deliberate attempt to distort an already devel-
oped structure in a radical manner. The objective of the present
research is to examine and explain the structural transformation of
turbulence from one prescribed state to another. The rationale and
strategic approach for achieving this goal are as follows.

Let us consider a canonical flow, which has a natural Cε ≈
const. state and which was allowed to reach this state, so that its
structure was essentially free of apparatus effects. Then, let us
introduce a disturbance into this flow, which is strong enough to
impose its own preferential turbulence structure in its vicinity, but
whose effects would eventually decay downstream so that the undis-
torted structure of the original canonical flow would be recovered,
although not necessarily without permanent changes in the levels
of the various turbulence properties. Now, there is a flow region
in which the turbulence structure would undergo a metamorpho-
sis from a disturbance-dominated state to a disturbance-free state.
This would be a region of multi-structure turbulence, namely one
in which at least two kinds of dominant eddies exist and compete
for contributing to the local averages at the energy-containing level,
but also possibly in the fine structure. As a first step towards un-
derstanding this transformation mechanism, it seems advisable to
examine idealised basic flows and disturbances. Our respective
choices were USF and grid-generated turbulence. Both of these
flows have been studied extensively and have well known structures
that are very different from each other. In particular, USF has a
highly anisotropic turbulent stress tensor, well-organised coherent
structures and a turbulent kinetic energy that grows exponentially
with increasing distance from its origin, whereas grid turbulence
is nearly isotropic and decays. Consequently, we expect to have
well-defined and very distinct initial and final states for the multi-
structure flow region.

The implications of this work and its future extensions could
be far reaching, as the vast majority of practical flows are multi-
structure. Abundant examples can be found in many industrial,
aerospace and transportation systems, but also in the atmosphere,
oceans and other bodies of water, and in biological contexts (e.g.,
the cardiovascular and pulmonary systems). The theoretical treat-
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ment and computational modelling of such flows is beyond the ca-
pabilities of the Richardson-Kolmogorov postulate and related clas-
sical turbulence concepts and this work will hopefully contribute
towards developing alternative analyses and models.

APPARATUS AND INSTRUMENTATION
The wind tunnel facility and shear generating apparatus (Fig.

1) were the same as those in our previous study (Nedić &
Tavoularis, 2016), with one modification: the far downstream walls
of the test section were adjusted in order to maintain a constant pres-
sure, thus extending the range of meaningful measurements beyond
previously possible values. Uniform mean shear was generated by a
shear generator, followed by a flow straightener, both of which com-
prised 12 channels with a spacing of M = 25.4 mm. One of three
square–mesh grids was inserted across the flow at a downstream dis-
tance x1 = 4.5h, where h = 0.305 m is the height of the test section.
The three grids included a perforated plate (RG18) with a mesh size
Mg = 18.00 mm and a solidity of 0.25 and two screens made of wo-
ven wire (RG13 and RG3) with mesh sizes 12.70 and 3.18 mm and
a solidity of 0.29. All grids were chosen as to introduce a relatively
mild, small–scale distortion to the USF turbulence. In particular,
the mesh sizes of RG18 and RG13 were somewhat smaller than the
value 21 mm of the integral length scale of undistorted USF at the
location of grid insertion, whereas that of RG3 was much smaller.

All measurements were made using constant temperature hot–
wire anemometers. Single–point measurements of the streamwise
and transverse velocity components were made with a custom–
made device, which included a cross–wire probe with sensor
lengths of 0.85 mm and a normal sensor with a length of 0.5 mm, so
that two sets of measurements of streamwise properties could be ob-
tained simultaneously and compared to each other. Two–point mea-
surements were made with two cross-wire probes, each of which
was traversed independently from the other in the x2 direction. The
diameter of all sensors was 2.5 µm and the distance between adja-
cent sensors was 0.5 mm. Unless otherwise stated, turbulent statis-
tics presented below were obtained with the three–sensor device.
Streamwise derivatives were estimated from temporal ones with the
use of Taylor’s frozen flow approximation. The rate of turbulent
kinetic energy dissipation was calculated as ε = 15ν(∂u1/∂x1)2

and the streamwise Taylor microscale as λ = (15νu′21 /ε)1/2, where
u′1 is the standard deviation of the streamwise velocity fluctuations.
The streamwise integral scales L11,1 and L22,1 were computed by
integrating the corresponding temporal autocorrelation functions to
their first zeros and employing Taylor’s frozen flow approxima-
tion, whereas the transverse integral length scales L11,2 and L22,2
were determined by integrating the corresponding two-point cor-
relation coefficients (measured by the two cross–wire probes) to
their first zeros. Finally, the dissipation parameter was estimated
as Cε = εL11,1/u′31 .

THE MEAN AND TURBULENT FIELDS
Fig. 2 shows the streamwise evolutions of u2

1, the shear stress
correlation coefficient ρ = −u1u2/u′1u′2, L11,1, Reλ and Cε for the
undistorted and distorted cases. As expected, u2

1 grew exponentially
in undistorted USF (Tavoularis, 1985), and decayed within a region
downstream of each grid before eventually recovering an exponen-
tial growth with approximately the same exponent as in undistorted
flow. The presence of a grid introduced a permanent loss of u2

1,
which increased with decreasing Mg. It is noted that the region very
close to the grid, where the turbulence is strongly inhomogeneous
and there is local production by an alternating mean shear is not of
interest in this work. ρ , which is a measure of the Reynolds stress
tensor anisotropy, was reduced from a value near 0.4 in undistorted
USF to much lower values near a grid, but eventually recovered its

USF value in all cases. L11,1 was reduced drastically by the intro-
duction of a grid, but in all cases it recovered an exponential growth
rate that was comparable to that in undistorted USF. λ (not shown
here) was constant for all cases for x1 ≥ 9h and increased with de-
creasing Mg. Reλ was reduced significantly following the insertion
of a grid and, although its rate of increase eventually matched the
undistorted USF level, its local values remained lower. All four
flows had significant upstream regions in which Cε underwent a
large stepwise increase behind a grid, but then decreased rapidly
and settled at approximately the same constant value as in undis-
torted USF. One–dimensional energy spectra, not shown here, had
identifiable inertial sub–ranges, which became broader and had a
slope that tended towards -5/3 as the local Reynolds number in-
creased. In summary, all measurements indicate that the turbulence
within a range of distances from any of the three grids was multi–
structure and had features that were intermediate between those in
USF and grid–generated turbulence. Beyond this multi–structure
range, the turbulence relaxed to the undistorted USF self–similar
state, in which distortion by the grid persisted only in the form of a
permanent reduction in the values of k and L11,1.

Fig. 3 shows Cε vs. Reλ . It is evident that all three dis-
torted USF reached states in which Cε ≈ const., with all asymp-
totic values being in proximity of the value in undistorted USF.
This figure demonstrates once again that the local Reλ was sig-
nificantly lower in distorted than undistorted USF. All four flows
had significant upstream regions in which Cε ≈ Reα

λ
with α < 0.

In the undistorted USF, this corresponded to a multi-structure re-
gion, in which apparatus–generated structures coexisted with shear–
generated structures and where α ≈ −0.6, in agreement with our
previous finding (Nedić & Tavoularis, 2016). The three distorted
USF also had such regions, albeit with α ≈ −1. This value is re-
markably identical to the one found near the grid in purely grid-
generated turbulence (Vassilicos, 2015), but these two types of flows
have a very important difference: in grid turbulence Reλ decreases
downstream, whereas in grid-distorted USF it increases. This ob-
servation implies that the distorted USF turbulence is not identical
to grid turbulence but truly multi–structure. It follows further that
a power law with α ≈ −1 is not necessarily an empirical fit to a
specific type of turbulence. Of course, the ubiquity of a region with
α ≈ −1 is contradicted by the undistorted USF value of -0.6. Fig.
3 also shows that in all cases Cε reached a minimum and then in-
creased to reach its asymptotic value. In the case of undistorted
USF, this region was sufficiently long to be fitted with a power law
having α = 1, which agrees in sign but differs in value from our pre-
vious (Nedić & Tavoularis, 2016) finding of α = 0.5. This differ-
ence can be possibly attributed to small differences in the pressure
gradient in that region of the flow, as a result of side wall adjust-
ment for the purpose of boundary layer compensation, as well as to
the large uncertainty of power law fitting to the comparatively few
data values that were available in that region. As the distorted USF
flows also have ascending Cε regions, we cannot easily dismiss the
occurrence of some sort of structural overshooting, but our data are
not sufficient for a conclusive investigation of this issue, which we
delegate to future research.

LARGE–SCALE ANISOTROPY
We have previously (Nedić & Tavoularis, 2016) associated the

presence of a region with a variable Cε in undistorted USF with the
observation that L11,1 approaches its asymptotic growth rate further
downstream than where k and ε approach theirs. In this section,
we report measurements of L11,1 in grid-distorted USF, as well as
measurements of three additional integral length scales, L22,1,L11,2
and L22,2, normalised by the local L11,1, both in undistorted and
grid-distorted USF. The first two subscripts in these scales indicate
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Figure 1. Schematic diagram of the wind tunnel, showing the shear–generating apparatus, the co–ordinate system and the location of the grid.

Figure 2. Streamwise evolutions of (a) the variance of the stream-
wise velocity fluctuations, (b) the shear stress correlation coeffi-
cient, (c) the streamwise integral length scale of the streamwise
fluctuating velocity, (d) the turbulent Reynolds number and (e) the
dissipation parameter for undistorted USF (circles) and USF dis-
torted by RG18 (red squares), RG13 (green diamonds) and RG3
(blue stars); all measurements were made along the test section cen-
treline, where the mean velocity was Uc = 8.1 m/s.
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Figure 3. Dissipation parameter plotted vs. the turbulence
Reynolds number; symbols as in Fig. 2; dashed line marks the value
of Reλ in undistorted USF at the location of grid insertion.

the direction of the velocity component, whereas the third one in-
dicates the direction of spatial separation. The transverse two-point
correlations used to determine L11,2 and L22,2 were measured by
increasing the probe separation such that either probe was equally
distant from the test section centreline. The ratios of these scales
may serve as measures of the anisotropy of large–scale motions; as
reference, in isotropic turbulence, L22,1/L11,1 = L11,2/L11,1 = 1/2
and L22,2/L11,1 = 1 (Batchelor, 1953).

In Fig. 4 we show the streamwise evolution of the measured
integral length scale ratios L22,1/L11,1, L11,2/L11,1 and L22,2/L11,1
for the undistorted USF case and the three distorted cases. First, let
us examine the undistorted USF results. All scale ratios increased
monotonically with downstream distance up to x1/h≈ 11 and then
appeared to settle at values that were much lower than the isotropic
levels. The latter observation is hardly a surprise, because the strong
anisotropy of USF structure is well known. What is novel is the fact
that this anisotropy takes a long distance to reach self-similarity and
evolves over some distance even after Cε has settled at a constant
level. The asymptotic value of L22,2/L11,1 was about one third of
its isotropic counterpart, which is compatible with a previous ob-
servation that dominant coherent structures in USF are stretched
much more in the streamwise direction than in the transverse one
(Vanderwel & Tavoularis, 2011). The only other available measure-
ments of integral length scale ratios in USF are those by Vanderwel
& Tavoularis (2014), made in a water tunnel with the use of stereo-
scopic particle image velocimetry. Those measurements have val-
ues that are larger than the present asymptotic values but were taken
at a location that corresponded to the early stages of the present USF
where our values were larger than the asymptotic ones as well.

As shown in Fig. 2c, insertion of a grid resulted in a local,
but also a permanent, reduction of L11,1 and the reduction became
stronger with decreasing grid mesh size. Figs. 4b-d show the ef-
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Figure 4. Streamwise evolutions of integral length scale ratios
L22,1/L11,1 (circles), L11,2/L11,1 (cross) and L22,2/L11,1 (triangle)
for (a) undistorted USF and USF distorted by (b) RG18, (c) RG13
and (d) RG3. Solid line in (b)-(d) is L22,1/L11,1 in the undistorted
USF case. Vertical dash lines mark the grid insertion location.

fect of grid insertion on the length scale ratio. One may plausi-
bly anticipate that the grid would introduce an isotropisation effect
in its vicinity. Somewhat surprisingly, RG18 shows little evidence
for such an effect within the range of the present measurements,
which did not extend very close to the grid. As far as large–scale
anisotropy is concerned, RG18 appears to be entirely passive. In
contrast, RG13, which has an only slightly smaller mesh than RG18
(but also a higher solidity and a different design) had a clearly visi-
ble isotropisation effect, with the scale ratios relaxing to the undis-
torted USF levels only at the very end of the test section. A compa-
rable isotropisation effect was also observed for RG3.

THE FINE STRUCTURE
In this section, we investigate the evolution of the fine structure

of undistorted and grid-distorted USF. First we examine the level
of local anisotropy using as indicators the following ratios of the
variances of the few measurable velocity derivatives

K1 = 2
(∂u1/∂x1)2

(∂u2/∂x1)2
, K2 = 2

(∂u2/∂x2)2

(∂u1/∂x2)2
, K3 = 2

(∂u1/∂x1)2

(∂u1/∂x2)2
. (1)

All of these ratios should all be unity in locally isotropic turbulence.
The measured four derivative variances are among the 15 terms that
sum up to ε . For consistency, we measured all four derivatives with
the dual cross-wire probe. We estimated streamwise derivatives
from temporal derivatives via Taylor’s frozen flow approximation
and interpolated between values measured by the two probes to es-
timate the corresponding value on the test section centreline. In the
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Figure 5. Streamwise evolutions of the local anisotropy indicators
K1 (black symbols), K2 (red symbols) and K3 (open symbols) for
undistorted USF (circles) and USF distorted by RG18 (squares),
RG13 (diamonds) and RG3 (stars).

cases for which measurements could be obtained with the single
sensor, the results were found to be very close to the ones reported
here. Variances of transverse derivatives were estimated by extrap-
olating variances of differences between values measured by the
two probes to a zero separation; the minimum separation distance
between the centroids of these probes was 1.5 mm. These results,
especially the values of (∂u2/∂x2)2, are subjected to uncertainty
due to the limited spatial resolution and aerodynamic interference
(Valente & Vassilicos, 2014; Zhu & Antonia, 1996). In view of this
limitation, the significance of this discussion is mainly qualitative.

Figure 5 shows measurements of K1,K2 and K3. All proper-
ties had considerable scatter, but the trends allow us to make some
general observations. K1 took values of about 1.3 for all configura-
tions, undistorted and distorted, and throughout the range of mea-
surements; this value is consistent with previous measurements in
undistorted USF (Tavoularis & Corrsin, 1981). K3 also was nearly
constant, irrespectively of location and configuration. The present
value K3 ≈ 0.75 was consistent with the one reported by Ferchichi
& Tavoularis (2000) in the same facility using parallel sensors 0.5
mm apart, but higher than the value 0.45 reported by Tavoularis
& Corrsin (1981). Finally, K2, for which we found no previous
measurements, also appeared to be independent of location within
the test range, but its value seemed to be affected significantly and
permanently by the insertion of a grid. For comparative purposes,
K2 was roughly 1.3 in undistorted USF, 1.65 behind RG18 and 2.5
behind either RG13 or RG3. Such changes appear to be higher
than the anticipated uncertainty level and seem to indicate that it is
mainly (∂u2/∂x2)2 that is affected by a grid. In any case, the near
constancy of all indicators implies that the fine structure became
adjusted very fast to its asymptotic state.

To gain a deeper understanding of the evolution of the
fine structure, we now investigate the evolutions of the nor-
malised second and third order structure functions, i.e., Cn1 =
(δu1)n/(rε)n/3 = [u1(x1 + r)−u1(x1)]

n/(rε)n/3,n = 2,3. Kol-
mogorov’s hypotheses imply that these functions would be univer-
sal in the inertial and viscous subranges, provided that the local tur-
bulence Reynolds number Reλ is sufficiently large. Figure 6 shows
the centreline evolution of these two structure functions in undis-
torted USF, measured with the single–sensor probe and the Taylor
approximation. The data at all streamwise positions only collapsed
within a range of small separations (1 < r/η < 10; η is the Kol-
mogorov microscale), but the collapse region became wider with
increasing streamwise distance. This is hardly surprising, because
in USF increasing streamwise distance also corresponds to an in-
creasing Reλ , and therefore an increasing width of the inertial sub-
range; within this subrange, C21 ≈ 2.2, in line with previous find-
ings (Ferchichi & Tavoularis, 2000; Boratav & Pelz, 1997). The
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Figure 6. Streamwise evolutions of the normalised second (a) and
third (b) order streamwise structure functions for the undistorted
USF case. The horizontal line in (b) marks C31 = 4/5.

third order structure function tended towards developing a region
where it would attain the universal value -4/5, although it fell short
of reaching such a state at even the largest Reλ considered.

The scaling of the structure functions is known to be Reynolds
number dependent (Ferchichi & Tavoularis, 2000; Garg & Warhaft,
1998). Therefore, for a meaningful comparison between these func-
tions in disturbed and undisturbed USF, we compared a few cases of
undistorted and grid-distorted USF at locations with the same value
of Reλ . The relative streamwise locations of these measurements
can be seen in Fig. 2d and some important values are listed in Ta-
ble 1. The lowest Reynolds number, Reλ ≈ 60, was selected as it
falls within the multi–structure region behind the grids, whereas the
highest one, Reλ = 366, which was achieved at the test section end
for undistorted USF only, will be used as reference for comparing
the shapes of the transfer functions.

Table 1. Turbulent scale ratios and dissipation parameter at three
turbulent Reynolds numbers in undistorted and grid–distorted USF.

Flow Reλ λ/η L11,1/η Cε ρ x1/h

USF

56 15 46 0.83 0.41 2.2

163 25 142 0.52 0.45 6.7

224 30 258 0.59 0.41 10.2

366 38 507 0.55 0.42 14.7

USF-RG18

59 15 57 0.95 0.1 5.2

161 25 156 0.58 0.48 10.2

227 30 303 0.68 0.45 14.7

USF-RG13
64 15 64 1.21 0.39 6.2

160 25 183 0.69 0.36 14.2

USF-RG3
60 15 62 1.02 0.47 6.2

160 25 164 0.62 0.46 14.7

In Fig. 7 we show the normalised second order structure func-
tions C21 for the four examined configurations and any of four tur-
bulent Reynolds numbers for which measurements were available.
The following interesting observations can be tentatively based on

Figure 7. Normalised second order structure functions for Reλ =
80 (a), 160 (b) and 225 (c) in undistorted USF (circles) and USF
distorted by RG18 (squares), RG13 (diamonds) and RG3 (stars).
Note that in (c) we only show data for the undistorted USF and USF
distorted by RG18. The solid line in all plots corresponds to results
in undistorted USF for Reλ = 366, which was the largest achieved.
Vertical dashed lines mark the Taylor microscale.

these plots.

1. For all three Reynolds numbers, the structure functions for both
distorted and undistorted cases collapsed within the separation
range r . 10η , which extended to values that were consider-
ably lower than the Taylor microscale and so must represent
mostly the viscous subrange. This means that any distortion of
motions in this range caused by the grid decayed very quickly
downstream.

2. Surprisingly, the structure functions for both distorted and
undistorted cases also collapsed for very large separations
(r & 80η). This seems to imply that any distortion imposed
by the grid on the USF coherent structure streamwise extent,
when normalised by the local dissipation rate, was negligible.
In other words, the use of the dissipation rate as a scale was
successful in collapsing the data for these large–scale motions,
although the actual integral length scales suffered a permanent
reduction behind the grids.

3. It is only in the intermediate range of separations, which pre-
sumably overlaps largely with the inertial subrange, that distor-
tion effects were measurable. The differences among different
configurations decreased with increasing Reynolds number, as
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expected in consideration of the fact that multi–structure turbu-
lence tended to relax towards the USF structure. Separating the
effects of the three different grids is rather complex. It seems
that, for Reλ ≈ 60 and possibly also for Reλ ≈ 160, the effects
of the two smaller grids were stronger than those of RG18,
although the larger grid caused a much stronger structural dis-
tortion, as, for example, evidenced by the very small value of
ρ at Reλ ≈ 60. It is possible that the RG18 results contain ef-
fects of inhomogeneity and/or vortex shedding from the grid
bars. Moreover, the ratio of the actual dissipation rate and its
estimate from streamwise measurements in multi–structure tur-
bulence would likely be different from that in undistorted USF.

CONCLUSIONS
Compared to our previous report (Nedić & Tavoularis, 2016),

the present study extended the range of measurements in develop-
ing USF. Multi–structure turbulence was created by the insertion
of one of three small–mesh grids across the USF. This resulted in
substantial changes of the levels of all turbulence parameters, in-
cluding the turbulent kinetic energy and its dissipation rate, as well
as the various length scales of turbulence. Whereas the levels of
all parameters retained permanent reductions, their evolution rates
eventually relaxed to the undistorted USF values. Grid–distorted
USF was found to have a region near the grid where α =−1, as in
purely grid–generated turbulence, although, unlike in conventional
grid turbulence, in the present case Reλ was an increasing function
of distance from the grid.

The effect of grid insertion on the turbulent motions of all
scales were also investigated. Within the reported range of measure-
ments, no discernible changes were observed in the local anisotropy
and in the second–order structure functions. On the other hand,
there was a noticeable change in the large–scale anisotropy ratios.
The ratio L22,1/L11,1 was as low as 0.3 in the undisturbed USF
case, which confirms that previously identified, dominant, hair–pin–
shaped coherent structures are more elongated in the streamwise
direction than in the transverse one.

Second–order structure functions in undistorted and grid–
distorted USF at comparable Reλ collapsed in the respective vis-
cous sub–range as well as for the largest investigated separations,
when normalised by Kolmogorov scales. In contrast, within the
inertial sub–range, this structure function was affected by grid in-
sertion in the vicinity of the grid.
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search Council of Canada (NSERC) is gratefully acknowledged.
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