
WALL RESOLUTION STUDY FOR DIRECT NUMERICAL
SIMULATION OF TURBULENT CHANNEL FLOW USING A

MULTIDOMAIN CHEBYSHEV GRID

Zia Ghiasi
sghias2@uic.edu

Dongru Li
dli21@uic.edu

Jonathan Komperda
jonk@uic.edu

Farzad Mashayek
mashayek@uic.edu

Department of Mechanical and Industrial Engineering
University of Illinois at Chicago

842 W. Taylor Street. Chicago, Illinois 60607, United States

ABSTRACT
In wall-bounded turbulent flows, the near-wall region

is the most sensitive to the grid resolution. An insufficient
resolution normal to the wall results in an inadequate pre-
diction of flow statistics. Channel flow is a well-studied
benchmark for wall-bounded turbulent flows. The grids
used in previous direct numerical simulations (DNS) of tur-
bulent channel flow satisfy two general conditions: (1) The
first point (nearest to the wall) is located within y+ < 1 (y+

is the non-dimensional wall coordinate), and (2) there are at
least 10 points within y+ < 10. In numerical schemes that
use a nonuniform distribution of grid points normal to the
wall, satisfying both conditions demands more considera-
tion. The discontinuous spectral element method (DSEM),
as an example, uses a multidomain staggered grid with
Chebyshev distribution of points inside non-overlapping
subdomains. In each subdomain, the first and last grid’s size
is much smaller than the average grid size within that sub-
domain. Satisfying the second condition in such a method
results in an excessively small mesh size at the wall, restricts
the time step size, and increases the computational cost of
the simulation. In this paper, DSEM is used to conduct DNS
of compressible, turbulent flow in a three-dimensional chan-
nel to investigate the sufficient near-wall resolution, while
minimizing the restriction of the time step size. The first-
and second-order statistics are used to assess the accuracy
of the simulations.

INTRODUCTION
The accuracy of predicting near-wall turbulence statis-

tics in direct numerical simulations (DNS) strongly depends
on the adequacy of the spatial resolution normal to the wall.
The grid spacing criteria should be independent of Reynolds
number. Therefore, the spatial spacing is calculated based
on the wall unit (y+). Previous DNS studies of turbulent
channel flow employ grids that satisfy two general criteria:
(1) The first point (nearest to the wall) is located at y+ < 1,
and (2) there are at least 10 points below y+ = 10. In a fi-
nite difference scheme (or any other scheme that is capable
of employing a uniform or nearly uniform grid), these re-
quirements can be satisfied by placing the first point within
the first wall unit and increasing the spacing gradually mov-

ing away from the wall. However, in the schemes that use
nonuniform grids, such as some types of spectral and spec-
tral element methods, because of the special distribution of
the grid points, by satisfying the second criterion, the size
of the first grid is usually orders of magnitude smaller than
y+ = 1. For example, in discontinuous spectral element
method (DSEM) (Kopriva & Kolias, 1996; Kopriva, 1998,
2009) the domain is divided into non-overlapping hexahe-
dral subdomains (the so-called elements). Inside each ele-
ment, the spectral approximation is applied using Lagrange
polynomials with an order of approximation P. A staggered
grid with a Chebyshev distribution of points is used inside
each element. The grid consists of Gauss quadrature points
(used to calculate the solutions) and Gauss-Lobatto quadra-
ture points (used to calculate fluxes). Each hexahedral ele-
ment in the physical space is mapped into a unit cube in the
computational space.

The solution (Gauss) points of an element with a
Chebyshev distribution of points are determined by

X j+1/2 =
1
2

[
1− cos

(
2 j+1
2P+2

π

)]
, j = 0, . . . ,P , (1)

in each direction, over the interval of [0,1] in the mapped
space. For example, for P = 9, such a unit element has 10
points in each direction, with a distribution of the points as
illustrated in Fig. 1. Note that the first grid point is lo-
cated at X1/2 = 6.16×10−3. If we set the size of the near-
est element to the wall such that its first point is located at
y+ = 1, there would be only 2 points within y+ < 10. Even
by placing the first point at y+ = 0.1, there would be only
6 points below y+ = 10. On the other hand, if the first el-
ement is placed such that the second criterion is satisfied,
i.e., there are 10 points below y+ = 10, then the first point
would be located at y+ = 0.0616. In this case, the minus-
cule grid spacing (which happens both on the wall side and
the other end of the first element) requires an excessively
small time step size and significantly adds to the compu-
tational cost. Therefore, for schemes that use Chebyshev
grids, it is challenging to balance between the two require-
ments and choose a near-wall resolution that is sufficient to
capture the flow characteristics, while minimizing the com-
putational cost. To the best knowledge of the authors, this
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challenge has not been tackled before. In this paper, a com-
pressible, turbulent flow in a periodic channel is simulated
to investigate the appropriate near-wall resolution and the
effect of the resolution on the computational cost of the sim-
ulation.
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Figure 1. Distribution of Gauss points (blue ticks) in a
Chebyshev grid of order P = 9.

NUMERICAL METHODOLOGY
In this work, a nodal collocation form of the DSEM is

used as the flow solver (Jacobs, 2003). The DSEM code has
been employed for DNS and large eddy simulations (LES)
of compressible flow in complex geometries (Li et al., 2016;
Ghiasi et al., 2016). The code solves the unsteady, com-
pressible Navier-Stokes equations in non-dimensional con-
servative form. The governing equations can be written in a
vector form as

~Qt +~Fa
x + ~Ga

y + ~Ha
z =

1
Re f

(~Fv
x + ~Gv

y + ~Hv
z ). (2)

Here, ~Q is the solution vector, which is given by ~QT =
[ρ ρu ρv ρw ρe], where ρ is the density; u, v, and
w are the three components of velocity; e is the sum of the
internal and kinetic energy per unit mass. In Eq. 2, ~Fa,
~Ga, and ~Ha are the advective fluxes, and ~Fv, ~Gv, and ~Hv

are the viscous fluxes as described in Jacobs (2003). Three
non-dimensional numbers, i.e., reference Reynolds number
(Re f ), reference Mach number (Ma f ), and reference Prandtl
number (Pr f ) appear in the dimensionless governing equa-
tions, and are defined by

Re f = ρ
∗
f L∗f u∗f /µ

∗, (3)

Ma f = u∗f /c∗f , (4)

Pr f = c∗pµ
∗/k∗, (5)

based on the reference length L∗f , density ρ∗f , velocity u∗f ,
and temperature T ∗f scales. The superscript ∗ denotes di-
mensional variables. In the above equations, µ∗ and k∗ are
the fluid’s dynamic viscosity and conductivity coefficients,
respectively; c∗p is the constant pressure specific heat of the

fluid, and c∗f =
√

γR∗T ∗f is the reference speed of sound,

where γ = 1.4 is the heat capacity ratio, and R∗ is the gas
constant. The pressure, p∗, is calculated using the equation
of state, p∗ = ρ∗R∗T ∗ that closes the Navier-Stokes equa-
tions. A low-storage, fourth-order, explicit Runge-Kutta
scheme is used for time integration.

PERIODIC CHANNEL FLOW SIMULATION
In this work, the DSEM code is used to conduct DNS

of a three-dimensional, compressible, subsonic, fully devel-
oped turbulent flow in a periodic channel to study the grid
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Figure 2. Schematic of the computational domain.

resolution requirement near the wall. First- and second-
order statistics of the flow near the wall are used to assess
the accuracy of the solution.

A schematic of the computational domain and the co-
ordinate system is shown in Fig. 2. The flow is periodic
in streamwise (x) and spanwise (z) directions, and no-slip
walls are used at the normal (y) boundaries. The dimen-
sions of the computational domain are Lx = 5.61, Ly = 2,
and Lz = 2 in the streamwise, normal, and spanwise direc-
tions, respectively. The lengths are scaled by the channel
half-height (δ = Ly/2). This choice of domain allows for
comparison with previous work.

Previous Grids of Channel Flow DNS
Turbulent flow in a periodic channel with the config-

uration described in the previous section has been numeri-
cally studied before. Kim et al. (1987) performed the DNS
of a turbulent channel flow at a friction Reynolds number of
Reτ = uτ δ/ν = 180 (uτ is the wall friction velocity). They
used a fully spectral method with Fourier series in the ho-
mogeneous directions and a Chebychev polynomial expan-
sion in the normal direction. Their grid had 12 points within
y+ < 10, and the first point was located at y+ = 0.05. Rai &
Moin (1991) presented a finite-difference solution to the tur-
bulent channel flow (Reτ = 180) to compare the results with
those obtained from spectral methods. In their grid, the dis-
tribution of the points normal to the wall followed a geomet-
ric progression. Lyons et al. (1991) presented a pseudospec-
tral technique and simulated the turbulent channel flow with
heat transfer for a friction Reynolds numbers of Reτ ≈ 130.
Their grid’s first point was located at y+ = 0.18. Crawford
(1996) conducted a resolution study for turbulent simula-
tions using spectral elements by simulating a fully turbulent
channel flow at Reτ ≈ 200. They also used a Fourier dis-
cretization in the the periodic directions and a Chebyshev
expansion in the normal direction with the first grid point
located at y+ = 0.29. Moser et al. (1999) presented de-
tailed statistical data for DNS of turbulent channel flow at
three different Reynolds numbers of Reτ = 180, 395, and
590. In all three cases, there were 13 or more grid points
below y+ = 10. Lee & Moser (2015) recently presented
a DNS of incompressible, turbulent channel flow at differ-
ent Reynolds numbers ranging from Reτ = 180 to 5,186.
They had 15 points below y+ = 10 for the highest Reynolds
number case. The first point was located at y+ = 0.074 and
y+ = 0.498 for their lowest and highest Reynolds number
cases, respectively. A summary of the previously mentioned
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work with more details of their computational domains are
included in Table 1. All domain lengths are scaled by the
channel half-height (δ ), and domain sizes and grid points
appear in the order x, y, z.

Flow Conditions
In the present resolution study, we consider the channel

flow with a friction Reynolds number of Reτ ≈ 210. This
friction Reynolds number corresponds to a Reynolds num-
ber of Re = 5,000 based on the channel half-height (δ ) and
the centerline velocity (Ul) of a laminar parabolic profile
with the same volumetric flux. The Reynolds number based
on the channel half-height and the bulk mean velocity in the
channel (U) is Re f = 3,333. The volumetric flux (Q) can
be calculated by

Q =
∫

Acs

u dA =
2
3

Acs Ul = Acs U , (6)

where Acs = LyLz is the cross-sectional area. The Mach
number, based on the bulk velocity, is Ma = 0.4, and the
reference Prandtl number is chosen to be Pr f = 0.72.

In a channel flow, the flow is sustained by a negative
pressure gradient, which is not possible with a periodic do-
main in the streamwise direction. Therefore, a forcing term
is required to maintain the flow. Lenormand et al. (2000)
showed that a time-dependent forcing term is needed to
achieve a time-independent mass flux for a compressible
flow. The forcing algorithm of Lenormand et al. (2000) is
used in this work.

Initialization and Transition to Turbulence
The velocity field is initialized with a laminar parabolic

profile with a uniformly distributed random disturbance ap-
plied to the streamwise velocity, as

u(y) =−6
[(

y
2

)2
−
(

y
2

)]
(1+ ε). (7)

Here, ε is a 10% random disturbance which is introduced
to accelerate the transition of the flow regime to turbulence.
The temperature is initialized with a laminar Poiseuille pro-
file, and the density has an initial constant value of ρ0 = 1.
The initial pressure is calculated through the ideal gas law.

Our preliminary tests showed that the initial distur-
bance gradually decays after a few flow-through times with
Re = 5,000 for the case with the base resolution of P = 7,
and a fully developed turbulence cannot be obtained. A
temporary increase in the Reynolds number to Re = 10,000
does not help to preserve the initial disturbance either. In-
creasing the Reynolds number further is not computation-
ally practical with a reasonable simulation time. Instead, the
simulation is started at a lower resolution of P = 2. In this
approach (Jacobs, 2003), the truncation error of the scheme
at the lower resolution is expected to be sufficiently large
to provide the required disturbance for a transition to tur-
bulence. While the flow undergoes the transition to tur-
bulence, the resolution is increased step by step (P = 2,
P = 3, P = 5, P = 7), and the flow is simulated for about
3 ∼ 4 flow-through times at each resolution until the de-
sired resolution of P = 7 is reached. Then, the simulation
is continued at P = 7. First- and second-order statistics are
calculated after the flow reaches the statistically stationary
condition. Here, we use the skin friction coefficient (c f )
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Figure 3. Changes of skin friction coefficient (c f ) in time
(scaled with flow-through time) for the channel flow simu-
lation (case A-P7).

as an indicator of reaching the statistically stationary con-
dition. Figure 3 shows c f of the channel flow plotted ver-
sus flow-through time (Lx/U). During the first two flow-
through times, the skin friction coefficient stays at the lam-
inar value of c f = 6/Re f = 1.8× 10−3. After that, c f in-
creases, which denotes transition to turbulence. After about
15 flow-through times, the skin friction coefficient levels
off at a value of c f ≈ 8.13× 10−3 (averaged in time), in-
dicating statistically stationary flow. Dean (1978) provides
an empirical relation for the skin friction coefficient in two-
dimensional rectangular duct flows as c f = 0.073Re−1/4

h ,
where Reh = Uh/ν is the Reynolds number based on the
bulk mean velocity (U) and the channel height (h = 2δ ).
The empirical skin friction coefficient for the current sim-
ulation would be c f = 8.08× 10−3, which is in excellent
agreement with the calculated value of 8.13× 10−3. Re-
sults of the turbulent channel flow presented in this work
are obtained using this approach.

Grid Resolution
Three simulations are conducted using three different

grids for this resolution study. Details of each grid are in-
cluded in Table 2. The grid used for the first simulation
(case A-P7) contains 4,032 elements. The approximation
order inside each element is P = 7. Also, 18 and 14 ele-
ments are uniformly distributed in the streamwise and span-
wise directions, respectively. Sixteen elements are placed
in the normal direction. The distribution of elements in the
normal direction (y) follows a hyperbolic tangent function
of the form

yn

Ly
=

1
2

(
1−

tanh
[
λ ( 1

2 −
n

Ny
)
]

tanh
[
λ/2

] )
, 0 < n < Ny , (8)

where yn is the location of the boundaries of the elements,
Ny is the number of elements in the normal direction, and λ

is a tunable coefficient, which determines the compactness
of the grid near the wall. For case A-P7, by choosing λ =
3.44, the first grid point is placed at y+ ≈ 0.069, and there
are 11 points below y+ = 10. This grid satisfies both near-
wall resolution conditions and hence will serve as our base
case.

As mentioned earlier, a Chebyshev grid with its first
10 points within y+ < 10 requires an excessively small time
step size, which makes the simulation computationally ex-
pensive. To determine whether such resolution is needed,
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Table 1. Previous DNS studies of the planar turbulent channel flow.

Reference Reτ Domain size Grid points

Kim et al. (1987) 180 4π×2×2π 192×129×160

Rai & Moin (1991) 180 4π×2×2π 64×65×64

Lyons et al. (1991) 125∼ 135 12.67×2×6.33 128×65×128

Crawford (1996) 200 5.61×2×2 64×120×100

Moser et al. (1999) 180, 395, 590 4π×2×4π/3 128×129×128

Lee & Moser (2015) 182, 544, 1,000, 5,186 8π×2×3π 10,240×1,536×7,680

Table 2. Details of the grids used for the three resolution study cases.

Case
Number of elements

in x, y, z
P

Total

grid points

First point’s

y+

Points within

y+ < 10
Time step size Reτ

A-P7 18×16×14 7 2,064,384 0.069 11 6.48×10−4 213.6

B-P7 18×14×14 7 1,806,336 0.133 5 1.00×10−3 203.8

A-P9 18×16×14 9 4,032,000 0.045 13 4.16×10−4 215.2

Figure 4. Distribution of elements in the wall normal di-
rection for (a) case A-P7 and (b) B-P7.

and how severely it affects the computational cost, the sec-
ond case (B-P7) with lower normal resolution near the wall
is designed. In the case B-P7, the sizes of the first two ele-
ments near the wall in the normal direction are almost twice
those in case A-P7. In this grid, the first grid point is placed
at y+ ≈ 0.133 (compare with y+ ≈ 0.069 for case A-P7),
and there are five (compare with 11 for case A-P7) points
within y+ < 10. Here, we are interested in the grid resolu-
tion near the wall only. Therefore, the resolution away from
the wall is maintained. To achieve this, the tunable coeffi-
cient in Eq. (8) is chosen to be λ = 2.525, and the number
of elements in the normal direction is reduced to 14. Fig-
ure 4 compares the distribution of elements in the normal
direction for case A-P7 and B-P7.

In order to validate the adequacy of the resolution
of case A-P7, a third case (case A-P9) is designed such
that it has higher spatial resolution than case A-P7 in all
three directions. Spectral element methods provide two
levels of control over spatial resolution refinement, i.e., h-
refinement and p-refinement. With h-refinement, the num-
ber of elements, and subsequently sizes of the elements, are
changed. However, with p-refinement, the elements remain

unchanged, and the order of approximation (P) within the
elements is modified. Case A-P9 uses the same elements as
the case A-P7. However, the polynomial order is increased
to P = 9. Case A-P9 has almost twice the total number of
grid points of case A-P7. The results for the three cases are
provided and discussed in the next section.

Results and Discussions
Examples of the two-point velocity correlation for the

base case (case A-P7) are shown in Fig. 5 to illustrate
the adequacy of the computational domain. In this figure,
two-point correlations in the streamwise and spanwise di-
rections at two different distances from the wall (one very
close to the wall and one away from the wall, near the core
of the channel) fall off within the range of |Rii| < 0.05 for
the largest separation, where Rii is the two-point correla-
tion of the component of velocity in the i-direction. This
observation confirms that the values of the three velocity
components are independent at the largest separation, and
the computational domain is sufficiently large in both peri-
odic directions to capture the largest scale of the flow. This
behavior was observed in all simulations.

The mean streamwise velocity profiles for all three
cases in this resolution study as well as the previous DNS of
Crawford (1996) are shown in Fig. 6. Velocities are scaled
with the friction velocity (uτ ), and the wall coordinate (y+)
is plotted on a logarithmic scale. The plot demonstrates that
all three cases have the same mean streamwise profiles, and
those profiles agree with the previous simulation. All pro-
files also follow the law of the wall. It is therefore con-
cluded that all three cases have sufficient resolution to pre-
dict the first-order statistics of the near-wall flow accurately.

Comprehensive grid convergence can only be claimed
with the verification of second-order statistics. It is shown
that under-resolved grid in one or more directions nega-
tively affects the prediction of the mean properties as well
higher-order statistics of the flow (Karniadakis & Sherwin,
1999). Figure 7 presents the root-mean-square (RMS) of
the three components of velocity for all cases, along with
the results from DNS of Crawford (1996). The values from
case A-P7 and case A-P9 are within 4% of each other, and
they both provide close agreement with the reference re-
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Figure 5. Two-point correlations of the velocity from the periodic channel flow: Rxx ( ), Ryy ( ), Rzz ( ) in the
streamwise (near the wall (a) and away from the wall (c)) and spanwise (near the wall (b) and away from the wall (d)) directions.
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Figure 6. Comparison of mean streamwise velocity pro-
files obtained on different grids with published data.

sults, which means that case A-P7 provides sufficient reso-
lution to predict velocity RMS profiles. Even though case
B-P7 predicts the mean velocity correctly, it underpredicts
the RMS velocity near the wall. This underprediction is
more evident in the streamwise direction (u′). This observa-
tion is consistent with the results of Crawford (1996). Their
simulations revealed that the low resolution in the normal
direction causes underprediction of streamwise turbulence
intensity.

Moreover, from Table 2 it can be seen that Reτ , which
is calculated using the wall friction velocity obtained from
the simulations, does not change significantly from A-P7 to
A-P9. However, the Reτ of case B-P7 is noticeably lower
than those of the other two cases. Therefore, based on com-
parisons of mean velocity, RMS velocity, and Reτ , we con-
clude that the resolution in case A-P7 is sufficient to predict
the correct first- and second-order statistics, and case B-P7
does not provide sufficient resolution.

In wall-bounded turbulent flows, the grid near the wall
should be sufficiently resolved to capture the behavior of the
velocity profile in all regions of the boundary layer: the vis-
cous (laminar) sublayer, the buffer layer, and the fully tur-
bulent region (log-law region). Figure 8 shows the location
of grid points normal to the wall for all three cases superim-
posed on the plot of the friction velocity based on the law of
the wall to visualize the position of the points with respect

u′

v′

w′

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

y

u′
,v
′ ,

w
′

Case A-P7
Case B-P7
Case A-P9

Crawford (1996)

Figure 7. Comparison of RMS velocity profiles obtained
on different grids with published data.

to the boundary layer. In this figure, points from only the
first three elements near the wall are shown. For case B-
P7, there are 5 grid points within y+ < 10 and only 3 points
inside the laminar sublayer (y+ < 5). However, case A-P7
and A-P9 have 11, and 13 grid points within y+ < 10, re-
spectively, and they both have 7 points within the laminar
sublayer.

The small grid size at the wall results in a highly re-
stricted time step size. The time step size required by the
three cases are presented in Table 2. The time step size for
case A-P7 is 35% smaller than that of case B-P7. The com-
putation times for cases B-P7, A-P7, and A-P9 are 89, 160,
and 289 minutes per flow-through time, respectively. The
simulations were run on 32 nodes with Intel Xeon E5-2670
(2.60 GHz) with 16 cores in each node. The computation
cost increases for each case based on the resolution of the
grid due to two reasons: (1) By increasing the spatial res-
olution, the minimum grid size, and accordingly the time
step size, decrease. Therefore, more iterations are needed to
complete one flow-through time of the simulation. (2) With
higher resolution, there are more solution points through-
out the domain that need to be updated at each time step.
Therefore, the computation time required for each time step
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Figure 8. Location of grid points (within the first three elements near the wall) normal to the wall (vertical lines) superimposed
on the plot of the friction velocity based on the law of the wall (gray curve).

increases with the resolution.

SUMMARY AND CONCLUSIONS
The grids used for previous DNS studies of turbulent

channel flow satisfy two general requirements near the wall,
i.e., the nearest point to the wall is within y+ < 1, and there
are at least 10 points below y+ = 10. Satisfying the sec-
ond condition in numerical methods that use nonuniformly
distributed grid points, such as spectral and spectral ele-
ment methods that use a Chebyshev distribution of collo-
cation points, results in over-satisfying the first condition,
i.e., excessively small minimum grid size, and significantly
increases the computational cost. On the other hand, satis-
fying only the first criterion results in an insufficient number
of points within y+ < 10, and damages the prediction of the
flow statistics.

DNS of a three-dimensional, compressible, fully de-
veloped turbulent flow in a periodic channel has been con-
ducted to study the grid resolution requirement near the wall
in discontinuous spectral element method with multidomain
Chebyshev grid. It is shown that both conditions remain
valid for such scheme. Even if the first grid point is lo-
cated very close to the wall (y+ � 1), the lack of the suf-
ficient number of grid points within y+ < 10 results in un-
derprediction of the streamwise turbulence intensity and the
friction Reynolds number, for an order of approximation of
P = 7. Therefore, the second recommendation is required
to be satisfied for accurate prediction of flow statistics, even
though it results in a small minimum grid size and increases
the computational cost. Further investigation is needed to
study the effect of the approximation order on the near-wall
resolution requirement.
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