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ABSTRACT
This paper identifies coherent structures in cavity flows using

Dynamic Mode Decomposition (DMD). Time-resolved (12 kHz)
Schlieren is first used to visualize the density gradient field in
an open cavity (L/D = 6 and W/D = 3.85) flow at Mach 0.6.
Large-scale vortical structures in the shear layer are observed. The
frequencies of the neutrally stable DMD modes match the pre-
dicted Rossiter frequencies. The time-resolved velocity field is
then estimated using multi-time-delay modified stochastic estima-
tion via non-time-resolved Particle Image Velocimetry snapshots
synchronized with time-resolved fluctuating surface pressure mea-
surements. DMD of the resulting estimated time-resolved velocity
field also exhibits dominant modes associated with the Rossiter fre-
quencies. The observed coherent structures possess characteristics
of traveling waves induced by shear-layer instabilities. Despite the
truncation of turbulent kinetic energy in the flow field to obtain the
estimated velocity field, the flow dynamics are successfully revealed
through this approach.

Introduction
The study of flow over a cavity is a canonical problem. Strong

oscillations can arise in weapon and landing-gear bays at moderate-
to-high speeds, which can damage the cavity structure and its con-
tents (Heller et al. (1971)). Cavity flow can also cause high drag
(Gharib & Roshko (1987)). The topic of cavity flows and their con-
trol has been studied extensively for decades, and several reviews
can be found regarding this topic (Cattafesta et al. (2008); Gloer-
felt (2009); Lawson & Barakos (2011)). In open cavity flows, an
incoming boundary layer separates at the leading edge and forms
a free shear layer. Small disturbances in the shear layer amplify
due to the well-known Kevin-Helmholtz instability and grow into
large vortical structures. When these structures impinge on the
trailing edge, they generate an acoustic source that radiates waves
upstream. These waves initiate disturbances in the shear layer
through a receptivity process. This overall feedback loop can lead to
strong peaks and broadband pressure/velocity fluctuations in spec-
tra. The frequencies of these peaks can be predicted using a semi-
empirical equation proposed by Rossiter (1964), and these are so-
called Rossiter modes.

The development of the shear layer is of great importance to
the dynamics. Identifying and visualizing the spatial structures elu-
cidate the flow physics (Taira et al. (2017)). For instance, Proper
Orthogonal Decomposition (POD) can be used to identity the high-
energy spatial structures (Berkooz et al. (1993)), and furthermore
a reduced-order model can be constructed to model the system
(Pinnau (2008)). However, POD modes captured from non-time-
resolved PIV lack temporal dynamical information of the flow field.
In order to obtain the full dynamics, time-resolved data are gener-
ally required. Dynamic Mode Decomposition can be performed on
the time-resolved data to extract the energetic coherent structures
of the flow field associated with a particular frequency (Rowley

et al. (2009); Schmid et al. (2010)). Schmid (2010) recommends
the sampling rate be three times that of the Nyquist criterion when
performing conventional DMD. This can easily exceed the limita-
tion of current data acquisition hardware (e.g. cameras and lasers
in PIV) for measuring flow fields with characteristic frequencies on
the order of 1 kHz. The hardware that satisfy the sampling rate can
be extremely expensive or may not exist currently. Time-resolved
Schlieren is a less costly way to visualize the entire flow field than
time-resolved PIV, albeit in an integrated sense along the optical
path. In this work, we use a high-speed camera (12 kHz) in a z-type
Schlieren system to capture the cavity flow field at Mach 0.6. DMD
is performed on 500 snapshots to identify the coherent structures in
the density gradient flow field.

A numerical simulation can also provide a time-resolved flow
field. However, high-fidelity simulations at high ReD(O(105))
are generally prohibitive. An alternative way to obtain the time-
resolved velocity field is to take advantage of Stochastic Estima-
tion (SE) to reconstruct a reduced-order time-resolved flow field.
The non-time-resolved PIV data and time-resolved flow property
are unconditional variables acquired synchronously that are used to
estimate the conditional time-resolved velocity field via SE (Adrian
(1979)). SE has been developed and applied over the years. Mur-
ray & Ukeiley (2003) compared the reconstructed flow fields from
linear Stochastic Estimation (LSE) and quadratic Stochastic Es-
timation (QSE) in the cavity flow. Tinney et al. (2006) intro-
duced spectral-based LSE to estimate flow qunatities in the fre-
quency domain. Durgesh & Naughton (2010) applied both single-
time-delay (STD) and multi-time-delay (MTD) LSE based on non-
time-resolved POD temporal coefficients and time-resolved pres-
sure measurements in the near wake flow. Tu et al. (2013) improved
the estimate from MTD-mLSE with a Kalman filter. In addition,
SE in its causal form can predict the flow field in the future, which
can be beneficial in the application of closed-loop control (Ukei-
ley et al. (2008)). Therefore, we apply MTD-mLSE to estimate the
time-resolved flow field using low frequency sampled PIV and time-
resolved unsteady pressure measurements. This enables the appli-
cation of the DMD algorithm on the reconstructed data to reveal,
study and compare the dynamically important structures associated
with the Rossiter frequencies in the velocity field with those of the
measured time-resolved density gradient field.

The paper is organized as follows. The methodology section
describes the experimental setup and mathematical analysis, fol-
lowed by the results and discussion. Finally, conclusions are of-
fered.

METHODOLOGIES
Facility and Cavity Model

The experiments are performed in the Pilot Wind Tunnel facil-
ity located at the Florida Center for Advanced Aero-Propulsion at
the Florida State University. The stagnation pressure, p0, is mea-
sured by a 50 psi absolute pressure transducer via a pitot tube lo-
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cated inside the settling chamber. The stagnation temperature, T0, is
measured by a resistance temperature detector (RTD) inserted into
the settling chamber. The static pressure, ps, is measured using a
15 psi absolute pressure transducer via a pressure tap on the side-
wall upstream of the cavity model. Wind tunnel flow conditions are
monitored and controlled through a LabVIEW program. As shown
in Figure 1, the origin of the coordinate system is fixed at the mid-
dle of the cavity leading edge. The rectangular cavity model has a
dimension of L/D = 6 and W/D = 3.85 with D = 26.4 mm. The in-
coming boundary layer thickness at the cavity leading edge, δ0/D,
is approximately 0.16 with a shape factor of 1.44 at Mach 0.6. The
cavity model is assembled with an acoustically-treated ceiling op-
posite to the cavity opening. More details about the facility and
model are provided in Zhang (2017).

Figure 1: Schematic of the cavity model (units are in mm).

Particle Image Velocimetry and Unsteady Pressure
Coupling Measurements

Two-component Particle Image Velocimetry (PIV) is per-
formed to obtain the streamwise flow field on the z = 0 center
plane. A double-pulse Evergreen Nd:YAG laser (EVG00200) fires
the laser pulses at a repetition rate of 15 Hz. The collimated beam
travels through a series of optics to pass through the transparent
cavity floor forming a laser sheet with a thickness of approximately
1.5 mm, which illuminates sub-micron particles introduced into the
flow from the upstream pipe of the stagnation chamber. Two Im-
ager sCMOS cameras (2560× 2160 pixels), each equipped with a
Nikon Micro-Nikkor 55 mm 1:2.8 lens and a 532 nm band-pass fil-
ter, are oriented with their optical axes normal to the laser sheet.
The two cameras have an overlapped view at the center of the cav-
ity. Calibration is performed using a customized 2-D dot pattern.
Data processing is performed using DaVis 8.3.1. The resulting spa-
tial resolution is approximately 2.8 vectors/mm.

A transparent cavity floor is machined for installing 9 XCQ062
and XCS062 (5 to 15 psid) Kulite sensors with a XT190 (25 psia)
Kulite sensor located on the middle of the aft wall. All of the sen-
sors on the floor are shifted off the centerline to avoid blockage
of the laser sheet in the PIV measurement. For surface fluctuating
pressure measurements, a NI PXI 1031 and three NI 4062 acquire
the data at a maximum sample rate of 204.8 kHz for 15 seconds per
PIV run. The PIV and unsteady pressure measurements are syn-
chronized via post-processing, and laser pulses are captured using
a Scientech photo-diode with the pressure data simultaneously. De-
tails of the experiments are provided in Zhang (2017).

The frequency of Rossiter modes are predicted using the mod-
ified Rossiter equation given by Heller et al. (1970):

St =
f L

U∞

=
n−α

1/κ +Ma∞/
√

1+(γ−1)Ma2
∞/2

, (1)

where the phase lag, α , is 0.38 as in Rossiter (1964), and κ is 0.65,
and n = 0, 1, 2, . . . is the Rossiter mode index.

Schlieren Imaging
A modified z-type Schlieren setup is used to visualize the den-

sity gradient in the y-direction in this study. The detailed setup is
provided in Zhang (2017).

Multi-Time-Delay modified Linear Stochastic Esti-
mation (MTD-mLSE)

Stochastic Estimation was first introduced by Adrian (1979) to
study the turbulent flow and has undergone significant development
over the years. Conditional flow properties can be estimated us-
ing unconditional flow properties, denoted as ũ = 〈u|p〉, where ũ is
the conditional average of u given the unconditional measurement
p, which leads to a least-mean-square error estimate of u. Taylor
expansion of the stochastic estimation is

ãi = 〈ai|pk〉 ≈ Ai j p j +Bi jk p j pk + · · · , (2)

where ai is the ith POD coefficient, and p j is the jth probe mea-
surement, and ã is the conditional estimate. The coefficients
(Ai j,Bi jk,· · · ) are obtained by minimizing the mean square error
(〈(ã(t)−a(t))2〉) of the estimation.

MTD-mLSE is introduced by Durgesh & Naughton (2010) to
estimate a conditional variable using information from multi-time-
delays of unconditional variables. Keeping just the linear term in
Equation 2, MTD-mLSE has the following form

ãi(t) =
n=m

∑
n=−m

K

∑
j=1

Ai j p j(t− τn− τ0), (3)

where τn = n(1/ fs), 1/ fs indicates a time step in the pressure mea-
surements, and τ0 is the nominal lead or lag time. To minimize the
mean square error, the linear coefficients Ai j can be calculated using

[Ai] = [PP]−1[aiP]. (4)

Here, PP is the auto/cross correlation matrix of unsteady pressure
measured by different sensors, and aiP is the cross-correlation vec-
tor between the ith POD temporal coefficient and the unsteady pres-
sure sensors.

Dynamic Mode Decomposition
The DMD algorithm applied in the current study is based on

Algorithm 1 in Tu et al. (2014). The procedure is summarized here.
An operator ADMD is defined as

ADMD = Y X† (5)

where X and Y are data matrices containing snapshots of flow
that are separated by one sample interval [zzz111,zzz222, · · · ,zzzm−1] and
[zzz222,zzz333, · · · ,zzzm], respectively, and X† denotes the Moore-Penrose
pseudoinvese of X . The SVD of X is

X =USV ∗, (6)

where V ∗ denotes the conjugate transpose of V . To calculate the
eigenvalues and eigenvectors of ADMD more efficiently, ADMD is
projected onto the reduced POD basis as

ÃDMD =U∗ADMDU =U∗YV S−1, (7)
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in which only the first rDMD singular vectors and values are retained
in the SVD (full rank if rDMD =m−1). We compute the eigenvalues
and eigenvectors of ÃDMD as

ÃDMDφ = λφ . (8)

The DMD mode corresponding to the DMD eigenvalue λ is then
given by

Φ =Uφ (9)

The growth rate of the mode is calculated from the eigenvalue λ as
g = log |λ | fs, while the frequency is f = 6 λ fs/(2π), where fs is
the sampling frequency.

RESULTS AND DISCUSSION
The mean removed velocity fields obtained from the PIV mea-

surements are normalized by U∞ and used for determining the POD
temporal coefficients and spatial modes. The eigenvalues λ from
the POD calculation represent the TKE content of each mode, and
they are ordered from highest to lowest energy as the mode index in-
creases. The percentage of the sum of the first r modes is calculated
using

energy% =
∑

r
i=1 λi

∑
N
i=1 λi

, (10)

where the denominator represents the total TKE. The energy frac-
tion as a function of number of modes, and the mode shape of the
velocity components of the first three modes are presented in Figure
2.
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(a) Accumulated energy as a function of the number of modes.

(b) First three POD modes of u′ (left column) and v′ (right col-
umn) components.

Figure 2: Energy fraction and representative POD mode shapes.
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(a) Maximum correlation coefficient magnitude between the POD
coefficients and unsteady pressure measured by different sensors
as a function of mode index.
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(b) Distribution of maximum correlation coefficient magnitude as
a function of τ∗. Dashed lines indicate τ∗ =−3 and 3.

Figure 3: Cross-correlation between the POD coefficients and un-
steady pressure measured at different locations inside the cavity.

After obtaining the POD temporal coefficients from the veloc-
ity snapshots, MTD-mLSE is performed. The surface fluctuating
pressure data are down-sampled from 204.8 kHz to 25.6 kHz. The
unsteady pressure are normalized by q∞. A non-dimensional con-
vective time delay is defined as τ∗ = τU∞/L. The maximum of
the absolute value of the cross-correlation coefficients between the
POD temporal coefficients and unsteady pressure at different lo-
cations are shown in Figure 3a. As the mode index increases, the
correlation deteriorates. By using only POD modes with high corre-
lation, the first 41 modes are retained, which contain approximately
71% of the total TKE. The distribution of the maximum absolute
value of the correlation coefficient between the first 41 modes and
10 sensors over a wide τ∗ range is plotted in Figure 3b. It is clear
that high correlations only occur within a narrow τ∗ band from -3
to 3.

From the standpoint of statistics, an overfitted model has poor
predictive performance, as it overreacts to using data with low cor-
relation and noise. The model can also suffer if the τ∗ range is
too wide. To implement the estimation procedure more carefully, a
2-fold cross-validation process is performed to evaluate the perfor-
mance (Mosteller & Tukey (1968)). The total number of 2N = 4772
snapshots is split into two groups; the first N snapshots form the
training set, and the next N form the validation set. MTD-mLSE is
performed on the training set for a specified τ∗ range and is then
used to estimate the snapshots reconstructed from the same 41 POD
training modes in the validation set. The difference between the re-
sulting estimate and the reduced-order POD model with 41 modes
is used to quantify the rms error averaged over the entire domain
and N snapshots (Equation 11). These steps are repeated for differ-
ent τ∗ ranges. The entire procedure is performed again with the two
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sets swapped, and the combined error is the rms error of test 1 and
test 2.

euuu =

√√√√ 1
N

N

∑
i=1

‖ũuui−uuui‖2
2

‖uuui‖2
2

. (11)

where uuu represents the velocity vector. Because ±τ∗ is symmetri-
cally applied about τ0 = 0, τ∗half = 0.5(τ∗max− τ∗min) for a specific
τ∗ range. The rms error of the estimated velocity components ver-
sus τ∗half is presented in Figure 4. The error decreases initially with
increasing of τ∗ range. However, the error reaches a minimum and
then increases for a larger τ∗ range. This shows the estimation is not
necessarily improved with a larger τ∗ range. Therefore, the optimal
τ∗ range for MTD-mLSE is thus determined to be [-0.34,0.34].
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Figure 4: Estimation error in MTD-mLSE obtained via a 2-fold
cross validation process, where τ∗half denotes half of the range of τ∗

used in the estimation process.

Figure 5: A successive series of reconstructed flow fields showing v-
velocity contours overlaid with velocity vectors using MTD-mLSE.
The time interval ∆τ∗ between each successive flow field is 0.393.

After the cross validation, MTD-mLSE is applied on the to-
tal number of snapshots to reconstruct the time-resolved velocity
fields. A successive series of reconstructed flow fields are provided
in Figure 5. From the v-velocity contour, it is clear that the con-
vection of the flow is successfully reconstructed. From the vectors,
the recirculation regions are also captured. These flow features are
similar to those found using QSE in Ukeiley & Murray (2005).

Before applying DMD on the reconstructed time-resolved ve-
locity fields, the DMD algorithm is first performed on the time-
resolved Schlieren images. A fast Fourier Transform is applied on

5000 Schlieren images to estimate the power spectrum of the data
set, and the Euclidean norm of the spectrum of the flow field at
each frequency is computed and shown in Figure 6. The frequency
of these high level peaks are quite consistent with the predicted
Rossiter frequencies. This indicates that the dynamics of the span-
wise averaged flow field is well captured in the density-gradient,
which implies that the dynamics of the data can be further analyzed
using DMD.
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Figure 6: Spectrum of the Schlieren image set. The dashed lines
indicate the predicted Rossiter frequencies from Equation 1.

The standard DMD algorithm is subsequently performed on
500 successive time-resolved Schlieren images. As shown in Fig-
ure 7, all of the eigenvalues of the DMD modes are located on
the unit circle, corresponding to purely oscillatory modal. In the
Schlieren images, the disturbances in the shear layer that grow into
large-scale vortical structures are due to the Kelvin-Helmholtz in-
stability, but their growth is ultimately attenuated by nonlinear sat-
uration. Therefore, the modes observed in the experiments are ex-
pected to have eigenvalues on the unit circle (saturation state). Ex-
cept for the mode at St = 0 corresponding to the mean flow, the
frequencies of the high-amplitude modes (Figure 7) are consistent
with the predicted Rossiter frequencies, as listed in Table 1. The
mode shapes are presented in Figure 8; the structures are formed
in pairs on both sides of the shear layer across the cavity opening,
which are consistent with the modal shapes of the density gradi-
ent field observed by Kegerise (1999) using phase-locked quantita-
tive Schlieren. This indicates that the modes of linear approximated
model exhibit good agreement with the direct measurements of the
nonlinear saturated system (Rowley et al. (2009)).
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Figure 7: Results of the DMD analysis of the time-resolved
Schlieren images. Colored markers indicate the DMD modes cor-
responding to the Rossiter frequencies.

After the initial test with the density gradient fields, DMD is
subsequently applied on the estimated time-resolved velocity fields.
Recalling that only the first 41 POD modes are used for estimating
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Table 1: Comparison of mode St obtained by different methods.

Rossiter modes I II III IV

Predicted frequency 0.30 0.76 1.24 1.71

PSD of images 0.31 0.75 1.22 1.69

DMD 0.29 0.76 1.22 1.64
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Figure 8: High-energy coherent structures of the density gradient
field associated with different frequencies.

the time-resolved flow field through MTD-mLSE, the DMD oper-
ator ADMD is projected on the low-rank POD basis containing the
first 41 modes. The distribution of eigenvalues of standard DMD
on the velocity fields is provided in Figure 9. Because all Rossiter
modes are not globally observed in the reconstructed velocity spec-
tra, the peaks split near the estimated Rossiter frequencies. Based
on the predicted Rossiter modes, the DMD modes are selected as
the colored markers. Unlike the Schlieren case in which all eigen-
values are located on the unit circle, the dominant modes are lightly
damped, likely due to the 71% TKE content in the truncated model.
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Figure 9: Results of the DMD analysis of the estimated time-
resolved velocity field. Colored markers indicate the DMD modes
corresponding to the Rossiter frequencies.

Then, the most energetic modal structures of the velocity com-
ponents and the spanwise vorticity fluctuations are extracted and

shown in Figure 10. The mode shapes of u′ and v′ exhibit quite
different flow structures: the modes of the streamwise velocity fluc-
tuations (except the first mode) are similar to the modes obtained
from the Schlieren images that produce structured pairs located on
both sides of the shear layer, and the mode shapes of the normal
velocity fluctuations are similar to the POD modes of the v-velocity
component. The mode shape of the spanwise vorticity fluctuations
exhibits some other different flow structures. A pair of lobes are
located on both sides of cavity opening at y/D = 0. As the mode
index increases, the scale of these structures decreases. These struc-
tures are localized in the region of the shear layer, unlike the more
global-like distribution of the modes of the u′ and v′ components.
These flow features are all related to traveling waves induced by the
Kelvin-Helmholtz instability.

For the first mode, the wavelength is larger than the cavity
length. Therefore, a complete wave pattern cannot be visualized
in the current study due to the limited domain size. A larger domain
extending farther downstream of the cavity trailing edge is likely
required to capture this structure. Furthermore, additional evidence
that the first mode is not accurately captured lies in two compara-
ble mode amplitudes around the first Rossiter frequency in Figure
10. However, the flow structures associated with higher Rossiter
frequencies are captured by DMD.

CONCLUSIONS
Time-resolved Schlieren imaging is conducted to capture the

integrated L/D = 6, W/D = 3.85 cavity flow at Mach 0.6. The
FFT of 5000 snapshots is computed, and the high-level peaks in the
norm of the spectra correspond to the predicted Rossiter frequen-
cies. Standard DMD analysis is performed on 500 successive snap-
shots, and dynamically important structures are successfully iden-
tified and visualized. The frequency of high-amplitude modes are
consistent with Rossiter modes, which implies the dominant two-
dimensional dynamics are captured in the density-gradient field.
The structures form in pairs on both sides of the shear layer, and
the length scale decreases with increasing frequency.

Synchronous 15 Hz PIV and time-resolved unsteady surface
pressure measurements from 10 probes inside the cavity are con-
ducted to establish the correlation between velocity fields and sur-
face fluctuating pressure. MTD-mLSE is performed based on the
first 41 POD modes containing approximately 71% of the TKE
to estimate the time-resolved flow field. The method successfully
reconstructs the convective flow motion and recirculation regions.
DMD is then applied on the estimated time-resolved flow fields.
The DMD modes corresponding to the Rossiter frequencies are
identified. The dynamic modes of the velocity components and the
spanwise vorticity fluctuations are presented, showing characteris-
tic structures of traveling waves induced by the Kelvin-Helmholtz
instability.

As a reduced-order approach, POD modes with approximately
30% TKE have been filtered, and the potential contribution of these
modes to the flow dynamics warrants further study. Despite this de-
ficiency, the current study provides a method to study the pertinent
dynamics of high-speed cavity oscillations.
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