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Abstract
Townsend’s attached eddy hypothesis forms the basis for one

of the most far-reaching concepts in the analysis of the logarith-
mic layer in wall-bounded turbulent flows. The hypothesis pro-
poses that the eddying motions in the inertially dominated region
are energetic and geometrically self-similar eddies that scale with
the distance from their eddy center to the wall, implying that these
three-dimensional eddies can be completely scaled using a single
length scale. The attached eddy hypothesis has been used suc-
cessfully to predict turbulence statistics and the spectral behavior
in wall-bounded flows.

Here, we experimentally investigate the existence of self-
similar flow structures in fully-developed turbulent pipe flow at
Reτ ≈ 2390. The data is simultaneously acquired at two pipe cross-
sections using two stereo PIV systems, where the streamwise sep-
aration ranges from 0 to 9.97R. The structures are unconditionally
sorted by their spanwise length scale through an azimuthal Fourier
decomposition. The sorted structures are thereafter investigated us-
ing two-point correlations, and the resulting correlation maps are
shown to exhibit self-similar behaviour with respect to its spanwise
length scale. This single length scale provides a complete descrip-
tion of the shape of the self-similar eddies.

Introduction
Townsend’s attached eddy hypothesis is one of the most im-

portant conceptual frameworks to describe the behavior of turbu-
lence in high Reynolds number wall-bounded flows. The hypothe-
sis proposes that the eddying motions in the logarithmic region are
attached to the wall, in the sense that they scale with its distance
from the wall (Townsend, 1976). The model considers only the en-
ergy containing, inertially dominated motions that are independent
of viscosity. Townsend further suggested that the eddies, spanning
a wide range of sizes, could be linearly superimposed following a
probability distribution for each eddy size, such that the model pro-
duces a constant shear stress. This model then predicts a logarithmic
behavior for both the streamwise and wall-parallel variances, a pre-
diction strongly supported by recent experiments by Hultmark et al.
(2012) and Marusic et al. (2013) and direct numerical simulations
(DNS) by Jimenez & Hoyas (2008) and Lee & Moser (2015).

Although these findings on logarithmic scaling implicitly sup-
port the attached eddy hypothesis, they do not reveal the nature of
the self-similar coherent structures themselves. Because these mo-
tions, located in the logarithmic region, constitute the essential el-
ements of the theory, the search for the appropriate description of

the self-similar eddying motion is an ongoing quest, which closely
follows the search for organized motions in wall-bounded flows. In
pursuing this aim, it is crucial to bear in mind that the representa-
tive eddy is a statistical concept that does not necessarily reflect the
shape or organization of any individual eddy but instead represents
the features of an average eddy, or even an assemblage of eddies.

In the search for the representative eddy, Townsend (1976) pro-
posed a double cone vortex which was based on the flow visualiza-
tions by Kline et al. (1967) and the the POD analysis of pipe flow
by Bakewell Jr & Lumley (1967). The identification of the hair-
pin vortices by Head & Bandyopadhyay (1981) inspired Perry &
Chong (1982) and Perry et al. (1986) to model the self-similar ed-
dies as lambda-shaped vortex loops. The attached eddy hypothesis
is a linear model and does not resolve the non-linear scale inter-
actions. This restriction affects the choice of representative eddy,
which needs to be large enough to contain the group of non-linearly
interacting scales. To that end, Marusic (2001) and Woodcock &
Marusic (2015) used a train of hairpins as the typical representative
eddy, inspired by the findings of Head & Bandyopadhyay (1981)
and Adrian et al. (2000) who showed that hairpin vortices of differ-
ent size spatially align in the streamwise direction forming a larger
coherent entity, the so-called hairpin packet or large-scale motion
(LSM). Such model eddies are used to recreate the statistical fea-
tures of the turbulence, but the physical connection with the turbu-
lent motions themselves is still elusive.

More recently, Hwang (2015) performed a numerical simu-
lation in a channel flow and found that the self-similar structures
in the log layer are the most energetic structures, and suggested
that the size of each of the attached eddies would be characterized
by its spanwise length scale. Hellström et al. (2011) and Hell-
ström & Smits (2014) showed that proper orthogonal decomposi-
tion (POD) is a useful tool for extracting the large energetic struc-
tures in turbulent pipe flow, and that the appropriate decomposi-
tion in the spanwise (azimuthal) direction is a Fourier decomposi-
tion. Hellström et al. (2016) built on this work and and showed that
the azimuthal wave length of the POD modes was proportionate to
its wall-normal height, providing a statistical structure with self-
similar cross-sectional behavior. Here, we expand on this work by
simultaneously performing stereo Particle Image Velocimetry (PIV)
in two pipe cross-sections using two stereo PIV systems. This al-
lows us to create a statistical picture of the three-dimensional struc-
tures, and subsequently address their scaling.
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Experimental setup
The experiments were conducted in a 200D long pipe facility,

consisting of seven glass sections each 1.2 m long with an inner di-
ameter D = 38.1±0.025 mm. The working fluid was water seeded
with 10µm glass hollow spheres. The data were simultaneously
acquired in two cross-sectional planes using two stereoscopic PIV
systems (2D-3C).

The first PIV system remained stationary and consisted of a
pair of 5.5 Megapixel LaVision Imager sCMOS cameras arranged
vertically above and below the pipe. The second system consisted of
a pair of 4.0 Megapixel LaVision Imager SX cameras mounted hor-
izontally on a low friction rail and driven by a traverse for stream-
wise motion. The mobile system was also equipped with a LaVi-
sion articulating light delivery arm, allowing the laser sheet to be
moved together with the cameras. The streamwise displacement
of the second camera was measured with a dial micrometer with
a 12.7µm resolution. In order to reduce the error in the measured
distance, the displacement was recorded as the cumulative displace-
ment referenced from the origin. The test section was enclosed by
a rectangular acrylic box, filled with water to minimize the optical
distortion due to refraction through the pipe wall. An access port
was located immediately downstream of the test section in order to
insert the stereo PIV calibration target while the pipe was filled with
water. The target had 272 dots set in a rectangular grid, and was tra-
versed 2 mm in each direction of the laser sheets, resulting in three
calibration images for each stereo PIV camera and system.

The distinction between two laser sheets relies on that the
light scattering off the particles is governed by Rayleigh scattering,
where the scattered light maintain its polarization. Hence, following
the procedure of Hellström et al. (2015), the two laser sheets were
orthogonally polarized using two independent λ/2-wave plates and
each camera was subsequently equipped with linear polarizers such
that particles situated in each system’s laser sheet is only visible to
that system’s cameras.

The Reynolds number, ReD = UbD/ν = 100 000, where D is
the diameter (= 2R), Ub is the bulk velocity, and ν is the kine-
matic viscosity. The corresponding friction Reynolds number is
Reτ = uτ R/ν ≈ 2390, where uτ =

√
τw/ρ , τw is the wall the shear

stress, and ρ is the water density. Each data set contains 2000 image
pairs and was acquired at 10Hz, corresponding to an average con-
vective displacement of 13.8R between snapshots. All snapshots in
the time series can therefore be considered to be statistically inde-
pendent. A total of 21 data sets were obtained, where the stream-
wise distance between the two interrogation planes (ξ/R) was log-
arithmically increasing, such that (ξ/R) ∈ {0.0, 0.0262, 0.0357,
0.0488, 0.0672, 0.0919, 0.126, 0.171, 0.234, 0.320, 0.438, 0.598,
0.818,, 1.12, 1.53, 2.09, 2.86, 3.90, 5.34, 7.30, 9.97}.

Results and Discussion
The current data set allows us to create the normalized three

dimensional correlation map, ρ(m,ξ ,η):

ρ(m,ξ ,η) =
<

∫
r û1(m,r,x0)û∗2(m,r+η ,x0 +ξ )

√
r(r+η)dr >t

<
∫

r û1(m,r,x0)û∗2(m,r,x0)rdr >t
(1)

where û= [ûx ûr ûθ ] represents the azimuthally Fourier transformed
velocity field and ∗ represents the conjugate transpose. Subscripts 1
and 2 refer to PIV systems 1 and 2, respectively. It should be noted
that the correlation coefficient does not resolve the wall-normal lo-
cation of a structure, only the extent it remains correlated in the
wall-normal direction.

The line plots for correlations where η = 0 and m ∈ [5, 40]
are shown in figure 1. The correlations reveal the streamwise extent
of a structure unconditionally sorted by its spanwise wave length
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Figure 1. Streamwise correlation ρ(m,ξ/R,η/R = 0) for m ∈
{5, 40}.
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Figure 2. Comparison between the spanwise and streamwise
length scales for m ∈ [5, 40]. Solid line represents the behaviour
of self-similar structures: kx = 1.236 kθ .

(λθ = 2πR/m), disregarding any wall-normal migrations. It may be
seen that the streamwise extent of the correlations decreases with
decreasing spanwise wave length (or increasing m). In addition, the
correlations show a secondary peak located at ξ/R≈ 0.43 for m= 5
and ξ/R≈ 0.12 for m = 40. Because the location of the secondary
peak depends on the spanwise wavelength it is a dynamical feature,
and not due to a misalignment of the streamwise planes when ac-
quiring the data.

The streamwise wavelength (λx) is now estimated by finding
the location (ξ/R) where the correlation falls below some defined
threshold. Here we chose e−2 (0.1353) to represent the decay of the
correlation function. This threshold was chosen such that it would
encompass the region around the secondary peak.

The relationship between the spanwise wave number (kθ R =
2πR/λθ =m) and streamwise wave number (kxR= 2πR/λx) is seen
in figure 2. A set of self-similar structures are characterized by
kx ∝ kθ (or λx ∝ λθ ), which is visualized by the solid line in figure
2. The slope depends on the chosen threshold when evaluating λx,
but for the threshold used here the slope is empirically estimated
to be 1.236. The deviations from linearity for the high wave num-
bers is probably due to the difficulties of accurately estimating the
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Figure 3. Streamwise correlations in self-similar coordinates.
ρ(m,ξ/λθ ,η/λθ = 0) for m ∈ [5, 40], where the length scales are
normalized with λθ .

streamwise wave length for the small structures as the streamwise
grid resolution decreases.

Therefore the spanwise and streamwise length scales exhibit
a linear relationship for kxR ∈ [3.017, 43.62], with structure sizes
spanning more than an order of magnitude, λx/R∈ [0.1440, 2.083],
suggesting that the spanwise length scale can be used as a unifying
scaling parameter. When the streamwise coordinate is normalized
by the spanwise length scale, as in Figure 3, we see that indeed
the correlations exhibit a self-similar behaviour. It can also be seen
that the region displaying a secondary peak collapses, with the peak
centered at ξ/λθ = 0.50.

The nature of the secondary peak is clearer in the two-
dimensional maps, where we show the first quadrant of the
correlations (ξ ≥ 0; η ≥ 0) with respect to wall-normal and
streamwise shifts. Figures 4(a-f) shows the correlations for m ∈
{10, 20, 30, 40, 55, 65}, where the spanwise length scale for the
structure in figure 4(a) is 6.58 times larger than that in figure 4(f).

The correlation maps are similar for m ∈ [5, 35], after which
they expand both in the streamwise and wall-normal directions.
Hellström et al. (2016) used a POD analysis and found a similar
cut-off (m ∈ [3, 32]), beyond which the structures could no-longer
be considered to be self-similar. The correlation maps reveal a struc-
ture with a wall-normal length scale O(0.70−0.90λθ ) and stream-
wise length scale O(2λθ ), when considering both positive and neg-
ative η and ξ . Furthermore, the relationship provided in figure 2 es-
timates the streamwise end of the structure as ξ/λθ = 0.809, which
is where the correlation falls below e−2 along η = 0.

Within the wave length range m ∈ [5, 35], there exists a sec-
ondary peak at ξ/λθ ≈ 0.5, which is most likely the result of the
streamwise alignment of structures. This alignment is clearer for
the smaller structures, where the intensity of the secondary peak
is stronger. The increase in correlation magnitude may indicate a
more stable streamwise alignment for the smaller structures; it may
equally indicate that the larger structures are less likely to align.

Conclusions
Hellström et al. (2016) identified self-similar structures in the

cross-sectional plane in a turbulent pipe flow, and found that the
wall-normal profile of the structure scaled with its spanwise length
scale. They were, however unable to address the streamwise length
scale. We have now demonstrated that the streamwise and span-
wise length scales are in a constant scale ratio for structures with

streamwise length scales spanning more than a decade. Also, the
correlation plots were found to be self-similar when scaled by their
individual spanwise length-scale, supporting the concept of geomet-
rically self-similar structures existing over a large range of scales.

The streamwise length scale was estimated as the location
where the correlation is less than e−2. However, it was shown that
there is an alignment of structures within this streamwise region and
the lengthscale is therefore based on a train of structures. Because
the location of the secondary peak is fixed at ξ/λθ ≈ 0.50 the in-
clusion of the aligned structures when estimating the streamwise
length scale will not affect the self-similarity.

Future work will include a structure analysis incorporating
both streamwise extent and wall-normal location of the structures,
defined by their azimuthal wave length, and address the origin of
the secondary peak.
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Figure 4. Correlation map of ρ(m,ξ/λθ ,η/λθ ), where λθ = 2π/m. (a) m = 10; (b) m = 20; (c) m = 30; (d) m = 40; (e) m = 55; (f) m = 65.
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