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ABSTRACT

Tomographic particle image velocimetry experiments were

performed in the near field of the turbulent flow past a square cylin-

der. A triple decomposition was performed on the resulting velocity

fields into a time invariant mean flow and a fluctuating velocity field,

which is itself decomposed into a coherent and a residual/stochastic

fluctuating velocity field. The statistical distributions of the second

and third invariants of the velocity-gradient tensor were then com-

puted at various streamwise locations, along the centre line of the

flow and within the shear layers. These invariants were calculated

from “classical” Reynolds-decomposed fluctuating velocity fields

in addition to the coherent and stochastic fluctuating velocity fields.

The range of spatial locations probed incorporates regions of con-

trasting flow physics, including a mean recirculation region and sep-

arated shear layers, both upstream and downstream of the location

of peak turbulence intensity along the centre line. These different

flow physics are also reflected in the velocity gradients themselves

with different topologies, as characterised by the statistical distri-

butions of the constituent enstrophy and strain-rate invariants, for

the three different fluctuating velocity fields. Despite these differ-

ing flow physics the ubiquitous self-similar “tear drop”-shaped joint

probability density function between the second and third invariants

of the velocity-gradient tensor is observed along the centre line and

shear layer when calculated from both the Reynolds decomposed

and the stochastic velocity fluctuations. These “tear drop”-shaped

joint probability density functions are not, however, observed when

calculated from the coherent velocity fluctuations. This “tear drop”

shape is classically associated with the statistical distribution of

the velocity-gradient tensor invariants in fully developed turbulent

flows in which there is no coherent dynamics present, and hence

spectral peaks at low wavenumbers. The results presented in this

paper, however, show that such “tear drops” also exist in spatially

developing inhomogeneous turbulent flows.

INTRODUCTION

The general topology of the fine scales of turbulence may be

shown to depend on the invariants of the velocity-gradient tensor,

VGT henceforth. The VGT may be split up into a symmetric and

skew-symmetric component, the strain-rate and rotation tensors re-

spectively,
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in which u′i denotes the fluctuating components of velocity from a

classical Reynolds decomposition. These invariants are the coeffi-

cients in the characteristic equation for the VGT of the form

ξ 3 +Pξ 2 +Qξ +R = 0. (2)

For an incompressible flow P= aii = 0, hence the generalised topol-

ogy of the flow may be described by Q and R, defined as
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1
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The joint probability density function (pd f ) between Q and R,

f (Q,R), is observed to make self-similar “tear drop” shapes in a va-

riety of fully developed turbulent flows leading to it being described

as a “universal” feature of small-scale turbulent motions (Elsinga &

Marusic, 2010).

The vast majority of studies examining f (Q,R) have done so

in fully developed turbulent flows, in which the spectrum of turbu-

lent kinetic energy is akin to the model spectrum proposed by Pope

(2000). More recently, however, Gomes-Fernandes et al. (2014)

have examined the evolution of the state of the VGT in a spatially

developing turbulent flow generated by a multi-scale space-filling

fractal square grid. For such an inhomogeneous flow it was ob-

served that the “tear drop” shape of the joint pd f gradually unfolds

with distance x travelled downstream.

A characteristic of many spatially developing inhomogeneous

turbulent flows is that they contain a significant energy content in

coherent dynamics due to, for example, vortex shedding in bluff

body flows or Kelvin-Helmholtz instabilities in shear layers. Cru-

cially, these coherent dynamics are a consequence of large-scale
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instabilities within the flow that will scale with the largest rele-

vant/global length scales. It is thus not reasonable to consider them

statistically homogeneous or isotropic, as are the fine scales of tur-

bulence. The presence of such coherent dynamics led to the intro-

duction of a triple decomposition of the form

Ui = ui +u
φ
i +u′′i
︸ ︷︷ ︸

u′i

(5)

in which ui is the (time-averaged) base flow and the fluctuating

component of the classical Reynolds decomposition, u′i, is further

decomposed into a coherent fluctuation u
φ
i and a stochastic fluctua-

tion u′′i (Hussain & Reynolds, 1970).

This paper will thus examine the spatial evolution of the in-

variants of the VGTs, ai j = ∂u′i/∂x j, a
φ
i j = ∂u

φ
i /∂x j and a′′i j =

∂u′′i /x j . The particular flow chosen is that past a high aspect ra-

tio (effectively infinitely long) square cylinder, at a sufficiently high

Reynolds number to ensure that the flow is adequately turbulent.

METHODOLOGIES AND POST PROCESSING

The experiments, fully documented in Buxton et al. (2017),

were performed in a water tunnel which has a cross section of

600× 600 mm2. A high aspect ratio (A = 16) square cylinder of

side length D = 32 mm was mounted just downstream of the con-

traction of the tunnel perpendicularly to the incoming flow. This

configuration yielded a Reynolds number based on the cylinder

side length and free-stream velocity of ReD = 10,840. Through-

out this paper a Cartesian coordinate system, x− y− z (streamwise

- cross-stream - spanwise) with corresponding velocity components

U −V −W , is adopted with an origin located on the centre of the

rear face of the cylinder.

Tomographic PIV experiments were conducted that imaged

the flow immediately downstream of the cylinder in a field of

view (FOV) that measured 3.8D× 2D× 0.168D with N = 2,000

(×4 cameras) image pairs being captured. This spatial resolution

equates to approximately 11η , where η is the Kolmogorov length-

scale, for x/D & 1.5 up to a worst case scenario of ≈ 17η in the

separated shear layers at x/D = 0. Whilst a spatial resolution of

≈ 3η is generally considered necessary to resolve the smallest, dis-

sipative length scales within a turbulent flow it has been shown that

resolving the characteristic “tear-drop” shape of the joint pd f be-

tween Q and R is reliant upon a mix of dissipative and inertial range

scales > λ , where λ is the Taylor micro-scale (Buxton, 2015). The

spatial resolution of the present data easily meet this criteria (it is

no worse than 0.4λ and remains better than 0.15λ everywhere other

than within the mean recirculation region) and thus this data set may

be considered adequately spatially resolved to examine f (Q,R).
The resultant velocity fields were differentiated in space using an

in-house fourth order accurate finite differences approximation. In

order to correct for any non-zero divergence due to intrinsic ex-

perimental noise the data were post-processed using the divergence

correction scheme of de Silva et al. (2013).

The triple decomposition of (5) was carried out by phase av-

eraging the fluctuations u′i, calculated by subtraction from the time

average ui, into 18 phase bins of extent φm ± 10◦. Proper orthog-

onal decomposition (POD) was performed in order to obtain the

phase angle of each instantaneous velocity field. Perrin et al. (2007)

(amongst others) shows that the first two POD modes correspond to

the vortex shedding in the flow past a cylinder. The phase angle of

an instantaneous velocity field was computed from the time-varying

mode coefficients, a1 and a2 of these two POD modes. Finally, the

stochastic velocity fluctuation is the residual of (Ui−ui−u
φ
i ). Com-

putation of the overall turbulent kinetic energy showed that this de-

composition was energy preserving due to the observation that the

correlation 〈u
φ
i u′′i 〉 ≈ 0.

RESULTS AND DISCUSSION
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Figure 1. R.m.s. fields of the coherent (a) and stochastic (b) com-

ponent of the streamwise velocity fluctuation. (c) streamwise pro-

files of r.m.s. of {u′,uφ ,u′′} along the centre-line (solid lines) and

along the shear layers (dashed lines), defined as the locations, y(x),

at which the r.m.s. is locally a maximum.

The various fluctuating velocity fields, u
′(x), u

φ (x) and

u
′′(x) which are illustrated in figure 1, were differentiated spatially

according to the fourth order-accurate scheme described previously

and the various invariants of the velocity-gradient tensor were com-

puted. The spatial evolution of the joint pd f s of these invariants

was computed along two streamwise traverses, the centre line of

the flow (y = 0) and along the shear layers. At a given x location
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the y profiles of the r.m.s. of u′ have two local maxima, and thus

the shear layers were defined as the locations, y(x), of these max-

ima. Due to the typically observed intermittent distribution of the

velocity gradients some spatial averaging was performed, in which

a square window of size 0.13D×0.13D was centred on the point of

interest (i.e. on the centre line or the shear layer) in order to better

converge the statistics. A sensitivity study was conducted to assess

the size of this window on the ability to faithfully re-produce the

Q−R joint pd f and it was found to be optimal in the sense that

it was the minimal window size that generated relatively noise-free

statistics that were insensitive to modest changes in window size.

Joint pd f s were then produced of the various Q−R invariants,

computed from the {ai j,a
φ
i j,a

′′
i j} fields, at various streamwise loca-

tions. In order to make a direct comparison between the joint pd f s

computed from the various fields of velocity gradients we wished to

choose a contour level that encompasses an equivalent proportion of

the overall data available, i.e.

∫∫

A
fQR(Q,R)dRdQ = Σ = const. (6)

The choice of Σ is arbitrary, but we wished to choose a contour

level defining A that was sufficiently rare to ensure that we captured

a broad range of Q,R states but sufficiently common to ensure a

reasonably smooth contour from sufficiently converged statistics.

We chose a contour level such that Σ = 0.683, which is equivalent

to the proportion of data bounded by ±σ (one standard deviation)

for a univariate Gaussian distribution. The invariants themselves

are all normalised by the local value of 〈Qω 〉, computed from the

relevant velocity-gradient field such that the joint pd f s of figure

2(c), for example, are normalised by 〈Qω 〉 calculated from the a
φ
i j

field at the centre line and appropriate x-location etc.

It can be seen that the classical “tear drop” shape for the joint

pd f is recovered when calculated from the ai j field. This in itself

is a surprising result since the “tear drop” shape of the Q−R joint

pd f is considered to be associated with fully developed turbulent

flows. Although there is no clear definition of such a flow they may

be generally considered to be close to homogeneous and isotropic

(requiring the integral length scale to be smaller than a relevant ho-

mogeneity length scale), in the small scales at least, with mean ve-

locity profiles that may be collapsed when scaled by a relevant flow

variable such as the centre line velocity for a wake. Evidently these

criteria are far from being met in the near-field flow behind a square

cylinder. Further, the “tear drop”-shaped contours are equally visi-

ble, and quantitatively similar (with the exception of the x/D = 3.5
cases) on both the centre line and the shear layers in figures 2(a) and

(b). This is despite the fact that the flow physics for both of these

regions differ significantly. Along the centre line the shape of the

Q−R joint pd f contours are similar regardless of whether the data

are extracted from the mean circulation region (for the centre line)

or downstream of this in the turbulence decay region (x/D = 2).

Perversely, x/D = 3.5 is perhaps the location where one might as-

sume that the criteria for a fully developed turbulent flow, for which

the “tear drop”-shaped joint pd f is considered to be a universal fea-

ture, are more stringently met than any of the streamwise locations

further upstream. Despite this, the joint pd f s from this location are

the only ones not to collapse when normalised by 〈Qω 〉. The clearly

defined “tear drop”-shaped contours of the joint pd f s of figures 2(a)

and (b) are in contrast to the spatially developing fractal square grid

flow of Gomes-Fernandes et al. (2014), in which the “tear drop”

shape was observed to unfold as the flow develops downstream.

Comparison of figures 2(a) and (b) shows that the collapse of

the contours of fQR(Q,R) when scaled with the local quantity 〈Qω 〉
is marginally better along the shear layer than the centre-line, ex-

cluding the data from x/D= 3.5. There is significant energy content

in coherent motions in the shear layers, as illustrated in figure 1(a),

whereas along the centre-line there is virtually none with a signif-

icant contribution to the total turbulent kinetic energy from the u′′i
fluctuations. It is thus a surprising result that the collapse of the

contours of fQR(Q,R) is better where there is a significant contribu-

tion from coherent motions as opposed to primarily the stochastic

fluctuations. Nevertheless, the similarity between the contours of

figure 2(a) and (b) is stark, despite the fact that they are computed

from regions with very different flow physics to one another. The

streamwise location at which the joint pd f most resembles that for

fully developed turbulence, with an enhanced contribution from sec-

tor I (defined in figure 2(a)) and elongated “Vieillefosse tail” is at

the location of peak turbulence intensity, x/D = 1.104.

Figures 2(c) and (d) show the equivalent joint pd f s between Q

and R computed from the coherent velocity-gradient field, a
φ
i j, along

the centre line and shear layer respectively whilst (e) and (f) show

those computed from the stochastic velocity-gradient field, a′′i j . It

is clear that the contours of fQR(Q,R) computed from the a
φ
i j field

do not exhibit anything remotely akin to a “tear drop” shape, whilst

those computed from the a′′i j field do, and are indeed quantitatively

very similar to those computed from the ai j field. If anything, it

may be commented that the contours show a better collapse with

the local 〈Qω 〉 scaling for the joint pd f computed from the a′′i j field

than from the ai j field. Again, however, the notable exception is

the contour extracted from the data at the furthest downstream lo-

cation, x/D = 3.5, at which we may have expected the flow to best

approximate a “fully developed flow”.

We may thus conclude from figure 2 that in this spatially devel-

oping inhomogeneous flow the “tear drop” shape of the contours of

the joint pd f between Q and R is almost entirely due to the stochas-

tic turbulent fluctuations. Even though 〈Q
φ
ω 〉 is non-negligible, in-

dicative of the average magnitude of the a
φ
i j tensor, it does not

contribute to the kinematics of the overall velocity-gradient tensor

through the Q - R joint pd f . It thus appears that the “tear drop”

is more ubiquitous than first thought since it appears in flows with

significantly varied physics, for example fully developed/spatially

developing/recirculation/separated shear layers etc. Further, the sta-

tistical behaviour of the invariants of the VGT does not vary signifi-

cantly in space along either the centre line or the shear layer despite

the rapidly changing flow physics. To quantitatively illustrate the

spatially developing nature of the flow physics, specific to the VGT

itself, figure 3 presents the joint pd f s of the constituent components

of the invariant Q; Qω is the first term on the right hand side of (3)

and QS is the second term on the right hand side of (3). The vari-

ous joint pd f s are again normalised by the local (and field-specific)

values of 〈Qω 〉 and the data are extracted along the centre line and

shear layers at the same x locations as with the joint pd f s of figure

2. All contour lines presented again encompass 68.3% of the to-

tal available data within the 0.13D× 0.13D interrogation windows

from which the statistics are computed.

The topology of the fine-scale turbulent motions can be in-

ferred from such joint pd f s. The −QS ∼ si jsi j axis represents

points with a locally high rate of dissipation of turbulent kinetic

energy which are known to be arranged in sheet-like structures (e.g.

Ganapathisubramani et al., 2008) whereas the Qω ∼ωiωi axis is as-

sociated to points with a locally high enstrophy which are arranged

in tube-like structures in turbulent flows (e.g. Jiménez et al., 1993).

The 45◦ line of −QS = Qω represents a balance of enstrophy and

dissipation and these points may be somewhat vaguely described

as vortex sheets. Nevertheless, it has been shown that a very large

proportion of the data for fully developed turbulent mixing layers

lies along this line (Soria et al., 1994). Indeed of all the contours

of figures 3(e) and (f) those extracted from the location of peak tur-
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bulence intensity, x/D = 1.104 (the red contours), look the most

similar to those computed from fully developed turbulence. Despite

the similarity of the flow topology for all of the VGT fields, as il-

lustrated in figure 3, the joint pd f s of figures 2(c) and (d) are vastly

different to the classical “tear drop” shape for the joint pd f between

Q and R.

A particularly clear preference for high enstrophy, tube-like,

topology exists in the downstream locations of the a
φ
i j field, both

along the shear layers and the centre line (where admittedly the en-

ergy content of uφ (x) is low). This tendency develops with x since

the topology of a
φ
i j shows a tendency for vortex sheets further up-

stream. In this instance the very different flow physics/topologies at

the various downstream locations presented in figure 3(d) do trans-

late into quantitatively different joint pd f s between Q and R in fig-

ure 2(d), which are far from “tear drop”-shaped. Contrastingly, it

may be observed that (with the exception of x/D = 3.5) the joint

pd f s between Q and R computed from the ai j field, figures 2(a)

and (b), collapse onto self-similar “tear drop” shapes despite the

fact that no such collapse is observed in the joint pd f s between

Qω and −QS in figures 3(a) and (b). This is true along the cen-

tre line of the flow, in which there is initially a recirculation region

before spatially developing into a turbulent wake flow, as well as

along the shear layers. Along the shear layers there is a clear pref-

erence for high enstrophy structures to develop with increasing x,

whereas along the centre line there are very different distributions

as the flow transitions from a mean re-circulation to a vortex street.

Nevertheless, all of these regions produce “tear drop”-shaped joint

pd f s between Q and R.

CONCLUSIONS

Tomographic PIV experiments were performed in the near-

field of the turbulent flow around a square cylinder generating a

three-dimensional three component (3D3C) data set. The velocity

field was decomposed, according to (5), into a time invariant base

flow, a coherent fluctuation and a residual/stochastic fluctuation.

This was conducted by means of phase bin-averaging in which the

phase angle of each instantaneously acquired 3D3C velocity field

was calculated from the time-varying mode coefficients of the first

and second modes obtained from a proper orthogonal decomposi-

tion of the flow field. These two modes correspond to the vortex

shedding downstream of the cylinder. From these three separate ve-

locity fields the invariants of the velocity-gradient tensor were com-

puted and their statistics compared to one another. Since the flow is

spatially developing and inhomogeneous these statistics were com-

puted both upstream, including from within the mean recirculation

region, and downstream of the location of peak turbulence intensity

along the centre line of the flow. Additionally, the statistics were

extracted from the shear layer region of the flow; so-defined as the

local maximum in turbulence intensity at a given downstream loca-

tion, x.

Joint pd f s between the rotating and straining constituents of

the invariant Q, Qω and QS respectively, highlighted the very dif-

ferent flow physics and topologies of the various velocity-gradient

fields at the various spatial interrogation locations. Despite the dif-

fering flow physics and topologies of the various fields of veloc-

ity gradients the joint pd f s between the second and third invari-

ants, Q and R, resembled the classical “tear drop” shapes associ-

ated with fully developed turbulence when computed from the total

and stochastic velocity gradients. In fact the contours of the joint

pd f s were found to collapse in a self-similar fashion when appro-

priately normalised by the local ensemble average of Qω . Such

self-similar “tear drop” shapes were found along the centre line and

the shear layer at all but the farthest downstream locations. Ob-

servation of the relative contributions of the rotationally dominated

sectors I and II showed that these tended to be in balance with one

another and only very slowly variant in space, although their val-

ues did change according to which velocity-gradient field they were

computed from. The statistics of the inviscid source/sink terms in

the evolution of the enstrophy and dissipation were also observed to

collapse remarkably well with the local value of 〈Qω 〉 (not shown

for brevity), offering a potential explanation for the collapse of the

“tear drop”-shaped joint pd f s. As expected the joint pd f s com-

puted from the coherent velocity gradients did not resemble those

from fully developed turbulence.

It thus seems that the ubiquitous “tear drop”-shaped statisti-

cal distribution of the invariants of the velocity-gradient tensor is

even more ubiquitous than first thought. Not only does it appear

in a manner of (homogeneous) fully developed turbulent flows, but

this manuscript also shows that it exists in inhomogeneous flows

with rapidly spatially varying flow physics. Whilst fully developed

flows have a flat spectrum of turbulent kinetic energy at the low

wavenumbers the flow past a square cylinder has a clear spike at the

vortex shedding wavenumber. From this perspective we should thus

consider the “tear drop”-shaped joint pd f between the invariants of

the velocity-gradient tensor not as a universal feature of fully de-

veloped turbulence (Chacin & Cantwell, 2000; Elsinga & Marusic,

2010) but as a universal feature of turbulent flows.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Joint pd f s between Q and R along the centre line (left hand column) and the shear layer (right hand column) for the ai j (first row),

a
φ
i j (middle row) and a′′i j (bottom row) velocity-gradient fields. The dashed lines denote R = 0 and ∆ = Q3 +(27/4)R2 = 0, where ∆ is the

discriminant of (2) separating swirling (∆ > 0) and straining (∆ < 0) solutions. These lines allow the Q−R space to be partitioned into four

sectors (I − IV ) according to the dominant flow physics.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Joint pd f s between Qω and −QS along the centre line (left hand column) and the shear layer (right hand column) for the ai j (first

row), a
φ
i j (middle row) and a′′i j (bottom row) velocity-gradient fields. The dashed line denotes −QS = Qω . The contour colours correspond to

the equivalent streamwise locations as those identified in figure 2.
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