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ABSTRACT
We have conducted the linear transient growth analysis on a

turbulent channel flow at very low Reynolds number, such as Reτ =
50, with considering a nonlinear turbulence effect by eddy viscos-
ity. The maximum growth rate of perturbation at a certain target
time was computed and the optimal mode for the case was detected.
It is known when the flow is in a subcritical turbulent transitional
state of a very low Reynolds number, localized turbulent structures
are observed and turbulent spots are transitionally distributed in
the streamwise and spanwise directions to form a long stripe pat-
tern over a whole computation domain (Tsukahara & Ishida, 2014).
What underlies the transition mechanism and how the pattern is
generated have not been clarified well in detail. In the present tran-
sient growth analysis, we compared three flow conditions: laminar,
turbulent at Reτ = 50 and 500, in order to obtain specific features
for the case of very low Reynolds number. Note that no energy
growth was detected if the flow was laminar of that Reynolds num-
ber, while, with the turbulence condition, perturbation energy tem-
porally increased to approximately ten times larger at the maximum
than that of its initial state. The high Reynolds number case re-
sults of Reτ = 500 for whole target times basically corresponded
to those of reference studies (Del Álamo & Jiménez, 2006; Pujals
et al., 2009). On the other hand, the low Reynolds number case of
the present study, Reτ = 50, showed different aspects of character-
istics. Secondly, we analyzed the maximum growth rate in detail
for three limited target times. A wavelength of the dominant mode
which had the most kinetic energy in each target case enlarged as
the target time became longer among tested ones. It is noted the
two-dimensional growth not only in the spanwise direction but also
in the streamwise direction (λx/d = 2 ∼ 3) was observed at a short
target time. Thirdly, vectors and contour lines of wall-normal, span-
wise and streamwise perturbation velocities in z− y plane of each
wavelength mode and time series of their transient growth were pre-
sented. Although we need further investigation on how linear tran-
sient amplification affects on generating a long laminar-turbulence
stripe pattern observed in DNS, the present facts show dependency
of the optimal transient mode on Reynolds number and a target time,
those possibly bring a new knowledge for coherent structure spe-
cially at transitional low Reynolds numbers.

INTRODUCTION
Nonlinear hydrodynamic stability theory has been concerned

for years, with phenomena such as transition to turbulence, which
is still challenging theme to understand. Firstly Reynolds (1883)
mentioned about importance of nonlinear disturbances of Poiseuille
flow in a pipe, Bohr (1909), Heisenberg (1951) and Landau (1944)
treated them theoretically. In these years, it has been reported that
fundamental features of such turbulent near-wall streak and stream-
wise roll-structure in channel flow were well predicted by transient
growth theory based on a highly non-normal operator of a strong
sheared flow (Butler & Farrell, 1992; Trefethen et al., 1993; Reddy

& Henningson, 1993; Farrell et al., 2017). Recently, as for turbu-
lent channel flow, Del Álamo & Jiménez (2006) directly simulated
the maximum transient growth rate of perturbation based on the
linearized Navier-Stokes equations with turbulence mean velocity
and turbulence eddy viscosity. It was found that streamwise elon-
gated structures generally experience large transient growth and the
transient growth rate had two prominent peaks at distinct spanwise
wavelengths, which Pujals et al. (2009) confirmed later too. One of
them is scaled by wall viscous units as λ+

z ≈ 100 and corresponds
to that of near-wall streak. The variable with a superscript of + rep-
resents normalization by viscous scale units. The other one is scaled
with outer units such as a channel half width, d, as λz/d ≈ 4, which
is independent on the Reynolds number. This fact agrees well with
the dominance of very large scale motion (VLSM) or large scale
motion (LSM) observed in experiment (Kim & Adrian, 1999) and
direct numerical simulation (DNS) (Abe et al., 2001; Del Álamo &
Jiménez, 2003), which implies that transient growth processes play
a significant role in the coherent motion, although their spanwise
wavelength are reported as λz/d = 1.5 ∼ 2.

As for the low Reynolds numbers, DNS by Tsukahara & Ishida
(2014) showed that the localized turbulence in a form of oblique
band was distributed in the streamwise and spanwise directions to
form a long stripe pattern. At low friction Reynolds numbers below
Reτ = 80, the stripe pattern exhibits an obliquity angle of about 25
degree against the streamwise direction. As the Reynolds number
decreases and approaches the lower limit of the transitional regime,
the obliquity angle becomes 45 degree. The formation mechanism
of the stripe pattern, the selection of obliquity angle have been un-
clear. In such a low Reynolds number flow, the spanwise wave-
length of a near-wall streak structure, λ+

z ≈ 100, reaches to a chan-
nel width, 2d. Nonlinear interaction of the inner and the outer scale
motions seems to occur, which is not negligible. The present study
gives a new sight of transient growth of linear amplification in such
a low Reynolds number flow as the first step.

PROCEDURE
Computational condition

The evolution equations for the disturbance generally is de-
rived by considering a basic state (ū+i , p̄+), and a perturbed state
(u′+i , p′+), both satisfying the Navier-Stokes equations. Pertur-
bation equations with turbulence eddy viscosity for the transient
growth analysis are expressed as follows,

∂u′+i
∂ t+

+
∂

∂x+j

(
ū+i u′+j +u′+i ū+j

)
=−∂ p′+

∂x+i
+

∂
∂x+j

(
ν+

T
∂u′+i
∂x+j

)
.

(1)

We assume that the flow is homogeneous in the streamwise, x, and
spanwise directions ,z. We apply the total eddy viscosity normalized
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in viscous wall units, which is described as ν+
T = νT /ν = 1+ν+

t , to
consider the turbulence effect of nonlinear terms in the equations. In
the present case, the turbulent mean velocity profile, ū+, is defined
as follows,

∂ ū+

∂ (η)
=−Reτ η

ν+
T

, (2)

where η = y/d and Reτ = uτ d/ν . We use turbulent eddy viscosity,
ν+

t , suggested by Reynolds & Tiederman (1967) as same as Del
Álamo & Jiménez (2006) and Pujals et al. (2009) did for the case
of the higher Reynolds number channel flow.

f1 = 1−η2, f2 = 1+2η2,

f3 = 1− exp
(
− (1−|η |)Reτ

A

)
,

ν+
t = 0.5

{
1+
(

κReτ f1 f2 f3
3

)2
}1/2

−0.5 (3)

Turbulence mean velocity, ū+, and total eddy viscosity, ν+
T , are

shown for the cases of Reτ = 50 and 500 in Fig. 1a and Fig. 1b,
respectively. Parameters A and κ are set as A = 26.5 and κ = 0.426.
Values of ū+ are calculated with ν+

T on the basis of Eq. (2). In the
present study, v̄+ and w̄+ are set as zero. For a comparison, we per-
form the case of Poiseuille laminar flow with keeping the same bulk
mean velocity as that of turbulent flow of Reτ = 50. DNS results at
Reτ = 50 show that turbulence bands are distributed and forming a
long stripe pattern in the whole computational domain among sub-
critical turbulence atmosphere. The turbulence eddy viscosity used
in the study is much smaller than that in the case of Reτ = 500. It
does not model the nonlinear turbulence motion of the transitional
flow state perfectly. For the future analyses, that nonlinear effect
will be considered.

Computational method
We compute the maximum transient growth rate by using the

strategy that Barkley et al. (2008) reported. Perturbation equations,
Eq. (1), are described with the linear evolution operator, A(t), and
a variable matrix, u′.

u′(t) = A(t)u′
0. (4)

The perturbation growth rate at a certain target time, τ , is described
as the inner vector as follows.

E(τ)
E(0)

= (A(τ)u′
0,A(τ)u′

0) = (u′
0,A(τ)∗A(τ)u′

0). (5)

The initial mode, v j, is computed as the eigenfunction of the self-
adjoint operator, A(τ)∗A(τ). This gives the eigenvalue, λ j, as the
growth rate.

A(τ)∗A(τ) ·v j = λ jv j, ∥ v j ∥= 1 (6)

On the basis of this concept, the maximum transient growth rate,
Gmax(τ), is computed as the maximum eigenvalue, λ j, of the self-
adjoint operator of A(τ), with the optimal mode matrix.

Gmax(τ) = max
∥u′(0)∥=1

E(τ)
E(0)

= max
j

λ j. (7)

In the present study for the turbulent channel flow, since the
base flow ui in Eq. (1) is considered to be homogeneous in the
streamwise and spanwise directions, all perturbation are expressed
in Fourier space.

u′i(x,y,z, t) = ûi(y, t)exp(i(Kxx+Kzz)) , (8)

p′(x,y,z, t) = p̂(y, t)exp(i(Kxx+Kzz)) . (9)

The variable with a hat superscript means a Fourier coefficient,
while Kx and Kz denote the streamwise and spanwise wave num-
bers. The streamwise and spanwise wave lengths are given by
λx = 2π/Kx and λz = 2π/Kz, respectively. For each combination
of (Kx,Kz), the maximum transient growth rate, Gmax, at a certain
target time, τ , is computed. In the study, computation grid number
in the wall-normal direction, y, is 129 for whole cases. Time step is
∆tuτ/d = 0.005.

Verification study of the presently developed code was con-
ducted. This is based on comparison of Gmax with those obtained
by Butler & Farrell (1992) for the case of laminar Poiseuille flow,
and those by Pujals et al. (2009) for turbulent channel flow at the
same Reynolds number condition.

RESULTS AND DISCUSSION
Maximum transient growth

We conduct transient growth computations for three cases:
Poiseuille laminar flow, turbulence flow at Reτ = 50 and 500. At
first, we compute the optimal growth rate for whole target times,
from τuτ/d = 0.05 to 5.0, and obtain an envelope value for each
wavelength mode, Gglobal . This is described as follows;

Gglobal = max
τ

Gmax(τ). (10)

It is noted that no energy growth was detected if the flow was lam-
inar of that Reynolds number, while, with the turbulence condi-
tion, perturbation energy temporally increased to approximately ten
times larger at the maximum than that of the initial state. These
values are shown in Fig.2a for Reτ = 50 and Fig.2b for Reτ = 500,
respectively. Results of high Reynolds number case of Reτ = 500
basically corresponds to those of reference studies (Del Álamo &
Jiménez, 2006; Pujals et al., 2009). We identify two prominent
peaks at the spanwise wavelength of λz/d = 0.2 (100 in viscous
wall units) and λz/d = 4, with condition that roughly λx > λz. The
present low Reynolds number study of Reτ = 50 showed different
aspects of characteristics. The peak of λ+

z = 100 in viscous wall
units is not apparent approximately at λz/d = 2 in Fig.2a, although
that at λz/d = 4 is prominent. It is interesting there is a small peak
of λx/d = 2 ∼ 3, which is true only in the low Reynolds number
case.

At second, we analyze the maximum growth rate for three lim-
ited target times, τuτ/d = 0.1, 0.6 and 1.0, for the case of turbulent
channel flow at low Reynolds number. A wavelength of the dom-
inant mode in each target case enlarges linearly as the target time
became longer among tested ones in the present study, though that
is not shown in this paper. Maximum transient growth rates of Eq.
(7) for each target time are shown in Fig.3a, Fig.3b and Fig.3c. We
observe that the dominant wavelength mode and its amplitude de-
pends on the target time. It is noted two-dimensional growth in the
streamwise direction (λx/d = 2∼ 3) appears at a short target time as
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shown in Fig.3a. That target time corresponds to t+(= tu2
τ/ν) = 5.0

in viscous wall units. This fact is drawing an attention, which mode
is one of the potential factors to cause a stripe pattern of turbulence
in a channel, although the amplification rate is not large and the time
period is short.

Optimal growth modes
We focus on the optimal growth mode for each target time,

which has the most kinetic energy growth, with assuming a two-
dimensional growth as Kx equals to zero; (1) λz/d = 1.0 for τuτ/d =
0.1, (2) λz/d = 2.0 for τuτ/d = 0.6, (3) λz/d = 3.0 for τuτ/d = 1.0.
For a reference, the dominant mode of λz/d = 4.0 needs a target
time of τuτ/d = 2.0. We detect vectors and contour lines of wall-
normal, spanwise and streamwise perturbation velocities in z − y
plane of each wavelength mode as shown in Figs.4. These values
are calculated on the basis of Eq. (8). In Figs.4, left lined figures
show the initial states (t = 0), right lined ones do the maximally
growing states (t = τ). Contour color lines represent perturbation in
the streamwise direction, u′. Blue tiny arrays are perturbation vec-
tors in the wall-normal and the spanwise direction, (v′,w′). Black
dotted-lines are drawn to clarify the flow direction in figures. The
streamwise roll-vortices appear in each figure, with different scales
and shapes. At a short target time, small vortices are generated only
near the wall. As the target time is longer, largest vortices scale
becomes larger.

Time series of their kinetic energy growth, E(t)/E(0), are
shown in Fig.5. The optimal mode for a short target time (τuτ/d =
0.1) grows and shrinks faster than other modes. It is left for the
future analysis whether the small scale mode dynamics affects on
the larger scale one. Though we need further investigation what
this transient growth plays a role in subcritical Reynolds number
flow to generate a long turbulence stripe pattern observed in DNS,
the present facts refer dependency of the optimal transient growth
mode on the turbulence condition, Reynolds number and a target
time, those possibly bring a new knowledge for turbulent channel
flow specially at transitional low Reynolds numbers.

CONCLUSION
We have conducted the transient growth analysis on turbulent

channel flow at very low Reynolds number, Reτ = 50. We have
computed the maximum transient growth rate for three target times,
and found some specific characteristics for turbulence channel flow
at very low Reynolds number. This fact has a possibility to be-
come one of the milestones to explain the stripe pattern formation
of laminar-turbulence coexistence, at the low Reynolds number of
subcritical transitional state. We need further investigation on ef-
fects of modes interaction in a transitional state. and will consider a
sophisticated nonlinear model and compare results with DNS ones.
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Figure 1: Base flow conditions based on Eqs.(3), when A = 26.5 and κ = 0.41; (a) mean streamwise velocity, ū+ and (b) total
eddy viscosity, ν+

T for turbulent cases of Reτ = 50 and 500.
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Figure 2: Envelope value of the maximum growth rate for whole target times, Gglobal ; (a) Reτ = 50 and (b) 500.
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Figure 3: Maximum growth rate at target times, Gmax (τ), at Reτ = 50 ; (a) τuτ/d = 0.1, (b) 0.6 and (c) 1.0.
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Figure 4: Optimal growth mode with Kx = 0 for target times; (a) (b) τuτ/d = 0.1, (c) (d) 0.6 and (e) (f) 1.0, initial state (left line)
and the maximally growing states (right line), at Reτ = 50. Contour color lines represent u′, blue vectors are (v′, w′) and black
dotted-lines with arrays are drawn for flow direction.
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