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ABSTRACT
Studies of canonical flows between parallel plates have served

an important role in understanding wall-bounded turbulent flows.
The movement of the boundaries is the flow driver in Couette flows,
while the boundaries resist fluid motion in Poiseuille flows. These
canonical turbulent flows are in some ways fundamentally differ-
ent, though there are also many similarities. Here we explore the
similarities and differences between Couette flows and Poiseuille
flow by studying the production, transport and dissipation mecha-
nisms. In both flows, the large scale motions are responsible for
Re dependencies and the difference between two flows. We show
that the role of small-scale motions is universal in both Poiseuille
and Couette flows at different Res. On the other hand, the contri-
butions of large-scales to energy production is stronger in Couette
flow than Poiseuille flow, due to the fact that the mean gradient in
Couette flow does not go to zero in the center of the channel. For
Couette flow, energy produced at the center of the channel is trans-
ported directly to the near wall region and dissipated by large scale
motions interacting with the wall. Similar behaviors are observed
in Poiseuille flow at high Re, but the magnitude is weaker than in
Couette flow.

INTRODUCTION
Studies of flow between parallel planes have served as an im-

portant tool to understand the wall-bounded turbulence. Especially,
pressure-gradient driven Poiseuille flow and boundary driven Cou-
ette flow are frequently studied with direct numerical simulation
(DNS). While the range of Reτ of DNS studies in Poiseuille flows
are increased approximately 25 times over 30 years (Kim et al.,
1987; Lee & Moser, 2015a), the Reτ of DNS studies in Couette
flows have not increased much in time. (Tsukahara et al., 2006;
Avsarkisov et al., 2014; Pirozzoli et al., 2014; Orlandi et al., 2015)
The major reason is that Couette flow simulations are more expen-
sive because larger simulation domains are generally required. To
our knowledge, the only work which systematically compares the
Poiseuille and Couette flows is by Orlandi et al. (2015). They re-
ported a lack of universality in the turbulent transport terms in the
overlap regions. This leads to the question of what causes the dif-
ference between Poiseuille and Couette flows.

Recently, the interest in large-scale motions in wall-bounded
turbulence has grown. Experimental data show that the large scale
motions have growing importance in high Re flows (Kim & Adrian,
1999; Balakumar & Adrian, 2007). They can also influence the
near-wall region where it is commonly believed that small scale
motions dominant (DeGraaff & Eaton, 2000; Hutchins & Marusic,
2007). Studying large-scale motions in wall-bounded turbulence is
challenging because it requires sufficiently high Re to separate them
from the small scales. It also requires sufficiently large simulation
domains or experimental facilities. If one can find some universality
in different wall-bounded turbulent flows, it can be used for “smart”

simulation and experiment designs to focus on the large-scale mo-
tions.

In this paper, we compare Poiseuille and Couette flows at var-
ious Res. In addition to the contribution of large-scale motion in
energy spectra of 〈u′2〉, the role of the large scale motions in the
energy transport mechanism is investigate. In particular, we have
applied the spectral analysis of the Reynolds stress transport equa-
tion that was introduced in TSFP9 by Lee & Moser (2015b). Similar
analysis of Poiseuille flows at Reτ = 1000 were independently per-
formed by Mizuno (2016). The spectral analysis of the Reynolds
stress transport equations provides detailed information on the con-
tribution of different length scales at different wall-normal distances
to the production, transport and dissipation mechanisms.

This paper is organized as follows. First, the simulation
method of both Poiseuille flow and Couette flows with the sim-
ulation parameters will be shown. Then the difference between
Poiseuille flows and Couette flows at different Re, length scales and
wall-normal distances will be discussed. Finally, conclusions will
be offered.

SIMULATION METHOD
A set of results from direct numerical simulations of plane

Poiseuille and Couette flows are used for analysis (Lee & Moser,
2015a, 2016). For Poiseuille the flows are driven by variable pres-
sure gradient to maintain a constant mass flow rate. For the Cou-
ette flows the two parallel walls are moving in opposite direction
at constant velocity. All simulations are performed using a Fourier
Galerkin discretization in the streamwise (x) and spanwise (z) di-
rections and seventh order B-Spline collocation in the wall-normal
(y) direction. The corresponding velocity components in x, y, and
z directions are u, v, and w, respectively. The Reynolds average is
denoted 〈·〉 and ·′ denotes the fluctuation from the average, so that
〈·′〉= 0. The details of the simulation parameters appear in table 1.
Note that U0 is the bulk velocity of Poiseuille flow and is the veloc-
ity of moving planes for Couette flow. Hence,

U0 =
1

2δ

∫
δ

−δ

〈u〉 dy Poiseuille

U0 = u(y = δ ) =−u(y =−δ ) Couette

where δ is the channel half-width. The superscript, +, denotes nor-
malization by the kinematic viscosity, ν , and the friction velocity,
uτ (=

√
ν(∂U/∂y)|wall). In table 1, Nx and Nz are the numbers of

Fourier modes in the x and z directions. See Lee et al. (2013, 2014)
for more simulation details.
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Table 1. Summary of simulation parameters. Lx/δ = 8π and Lz/δ = 3π in all Poiseuille flow cases. Lx/δ = 100π and Lz/δ = 5π in all
Couette flow cases. Here, ∆x and ∆z are in terms of Fourier modes for spectral methods. ∆yw and ∆yc are knot spacing at wall and center line,
respectively. δ is the channel half width. Reδ =U0δ/ν and Reτ = uτ δ/ν . T is the total simulation time without transition

Case Type Reδ Reτ Nx Ny Nz ∆x+ ∆y+w ∆y+c ∆z+ Tuτ/δ TU0δ

P550 Poiseuille 10000 543.5 1536 384 1024 8.89 0.019 4.53 5.00 13.6 250.0

P1000 Poiseuille 20000 1000.5 2304 512 2048 10.91 0.019 6.22 4.60 12.5 250.0

P2000 Poiseuille 43478 1994.8 4096 768 3072 12.24 0.017 8.23 6.12 11.5 250.0

P5200 Poiseuille 125000 5186.1 10240 1536 7680 12.73 0.498 10.35 6.36 7.7 186.5

C220 Couette 4000 219.5 6144 192 768 11.22 0.032 3.73 4.49 164.6 3000.0

C500 Couette 10000 501.9 15360 256 1536 10.27 0.040 6.33 5.13 37.6 750.0

RESULT
To contrast the nature of the large-scales in Poiseuille and Cou-

ette flows, the kz pre-multiplied spanwise one-dimensional spec-
trum of 〈u′2〉, kzEu′2 , for cases P5200 and C500 are shown fig-
ure 1. In both cases, the spectra have inner peaks at k+z ≈ 0.05
and y+ ≈ 12. Also, the magnitudes of local peaks are the same
with k+z Eu′2 ≈ 3.7. The striking difference is in the large-scales. In
P5200 there is an outer peak located at kzδ = 6 and y/δ ≈ 0.15, at
approximately the upper limit of the log region. On the other hand,
the C500 case has an outer spectral peak at kzδ = 1.2 and y/δ = 1,
the center of the channel. Further, the nature of this large scale peak
is evidently different in the two flows, with the Couette flow exhibit-
ing a narrow-band peak that extends across the entire flow, including
deep into the viscous layer. The outer peak in C500 is approximate
2.5 times stronger than in P5200 even though Reτ is roughly ten
times smaller. In case C500, there is a similar outer spectral peak in
the spectra of 〈v′2〉 and 〈w′2〉 (not shown). The Couette flow spectra
are consistent with the presence of very long large-scale streamwise
vortices, as have been observed by Tsukahara et al. (2006). All
observations show that Poiseuille and Couette flows have univer-
sal small-scale near-wall structure, but that they differ in the large
scales. One reason for the difference between P5200 and C500 is
of course that the Re is much lower in the Couette flow, and indeed
the P550 case has no strong outer spectral peak as in C500. Further,
P550 has no distinct peak at y/δ ≈ 0.15 due to the low Reynolds
number. It seems plausible that at Reτ ≈ 5000, a diffuse outer peak
near y/δ ≈ 0.15 like that in P5200 would occur in Couette flow,
in addition to a narrow band peak that spans the domain like that
in C500. Below, we explore the impact of the large-scale Couette
structure on energy dynamics through further spectral analysis.

We investigate the role of large scale motion in Poiseuille
and Couette flows by studying the spectral densities of terms in
Reynolds stress transport equation.

∂ 〈u′iu′j〉
∂ t

= Pi j + εi j +Di j +Πi j +Ti j (1)

where Pi j, εi j, Di j, Πi j, and Ti j are production, dissipation, viscous
transport, pressure transport and turbulent transport, respectively
(Mansour et al., 1988). We limit our scope to the case, i = j = 1,
in this study, and in figure 2, compare spectra of the terms in (1) as
defined in Lee & Moser (2015b); Mizuno (2016);

ψ =
∫

Eψ dkz (2)

where ψ is a term in (1).
The spectral densities of production, P(=−2〈u′v′〉d〈U〉/dy) in

the near-wall region are similar in the two flows. Further from the
wall, in the log region, the production occurs at wavenumbers that
scale with y−1 in both cases. The difference in production spectra
in Poiseuille and Couette flows is in the outer region. In Poiseuille
flow, the production at the center of the channel is constrained to
be zero due to the skew-symmetry of 〈u′v′〉 and d〈U〉/dy. There
is no such restriction in Couette flows. The peak in the production
spectra for Couette flow is at the center of the channel and much
stronger than the out production peak in Poiseuille flow.

The dissipation spectra are also similar in both flows except for
the large scales near the wall. Both flows have a peak at k+z ≈ 0.1
and y+ ≈ 15, and in both cases, dissipation occurs at wavenumbers
kz ∼ y−1/4. It is commonly believed that the dissipation is domi-
nated by small-scale motions, especially near the wall, however in
the Couette flow, there is a dissipation peak at large scales near the
wall, presumably due to large scale structures interacting with the
wall. There is no energy production at large scale near the wall, so
the large scales are transporting energy to the wall to be dissipated
in viscous boundary layers there.

There is no production of 〈v′2〉 and 〈w′2〉 in the channel geom-
etry, so the energy produced in 〈u′2〉 must be transferred to other
components. It is known that the pressure-velocity correlation, Πs,
is responsible for this inter-component transfer. The spectrum of
Πs,u′2 is therefore negative as shown in figure 2. The structure of Πs
is quite similar to the production, except that it has broader support
in kz. Also, as expected, in Couette flow there is no strong peak in
Πs at the center.

The spectra of turbulent transport, T , can be decomposed into a
component responsible for transfer in scale, Txz, and one responsible
for wall-normal transport, Ty, i.e.

ET = ETxz +ETy (3)

and

∫
ETxz dkz =

∫
ETy dy = 0 and

∫
ET dkz =

∫
ETy dkz = T (4)

Note that turbulent transport is the only mechanism that transfers
energy in scale.

In homogeneous isotropic turbulence, energy is on average
transferred from large scales to small scales. Such energy scale
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Figure 1. 1D kz-premultiplied energy spectra of 〈u′2〉+

transfer also occurs in wall-bounded turbulence, as shown in fig-
ure 2, and is stronger than wall-normal energy transport. However,
there is a transfer of energy to larger scales as well. Such “inverse”
energy transfer is observed from y+ ≈ 5 to the center of the channel.
Note that this is not clear in figure 2 due to limited color depths. In
particular, inverse energy transfer is stronger in buffer region and
the outer region. It may indicate that the mechanisms associated
with inverse energy transfer at different wall-normal distances are
different. Studying them is beyond the scope of current work. The
energy produced by large-scale motion in outer region is transferred
to even larger scales and finally transferred to other components.

Energy turbulent transport in the wall-normal direction is
weaker than scale transfer. In both Poiseuille and Couette flows,
the energy transport occurs in both directions, upward from the wall
and downward to the wall. As with scale transfer, there is separation
of scales at any wall-normal distance in both flows. Particularly in
Couette flow, there is strong energy transfer directly from the outer
region to near the wall. The structure of energy transport spectra
suggests that different energy transport mechanism are active at dif-
ferent length scales. Comparing the data with lower Re cases (not
shown here), such energy transfer from the outer region to near the
wall will increase with Re.

The last energy transport mechanism is viscous diffusion. Most
of the energy transport by viscous diffusion is from the buffer layer
to the near wall region. At small scales, a small amount of energy
is transported from the buffer layer to the overlap region in both
flows. No contribution of viscous diffusion in outer regions is ob-
served. Even in the viscous energy transport, there is a separation
of scales, especially in the Couette case, with a local peak in trans-
port at the dominant large-scale wavenumber. Such peak separation
occurs in Poiseuille flow as well, but it is not clear in figure 2 due
to limited color depth. Hence, the energy dissipated by large-scale
motion near the wall is transported from the buffer layer by large
scale motions. Some portion of the energy at large-scales in the
buffer layer is due to turbulent transport from the outer region, and
some is from inverse scale transfer.

As shown in eq (2), if one integrates the spectra in figure 1 and
2, then the profiles of 〈u′2〉 and the terms in eq (1) are obtained,
and the result is shown on the left side of figure 3. In these curves,
in general, there is weak Re dependencies for small y+ and strong
Re dependencies at large y+, except for the viscous transport term
which does not contribute in the outer region. Also, the difference
between Poiseuille and Couette flows only occur for large y+. We
have shown that the energy spectra and spectral densities of trans-
port terms of small scale motions are similar in both flows. Hence,
one can speculate that the difference between flows with different

driving forces and Reynolds numbers is only in the large scale mo-
tions. To test this speculation, we applied a high-pass filter to the
two-dimensional energy spectra and spectral densities of the trans-
port terms.

ψ =
∫

∞

0

∫
∞

0
E2d

ψ dkx dkz (5)

ψfilter =
∫

∞

kxcutoff

∫
∞

kzcutoff

E2d
ψ dkx dkz (6)

The filtered profiles with cutoff wavenumbers, k+x ≈ 0.002 and
k+z ≈ 0.02, are shown in the right of figure 3. Note that the cut-
off wavenumber is arbitrarily chosen. In most terms, the Re depen-
dencies and the difference between Poiseuille and Couette flows are
largely eliminated, except very close to the center of the channel.
Especially, the negative values of turbulent transport in the overlap
region are removed by the high-pass filtering. This means that the
energy transport from the overlap region that grows with increasing
Re is due to large-scale motions in both flows.

CONCLUSION
We have investigated data from DNS of plane Poiseuille and

Couette flows to understand their similarity and differences at dif-
ferent Reynolds numbers. In both flows, the Re dependencies of
〈u′2〉 and the terms in the Reynolds stress transport equations are
the results of the increasing roles of large-scale motions as Re in-
creases. Also, the difference in driving force results in large scale
differences across the whole channel. Since production in Couette
flow is non-zero at the center of the channel, the role of large-scale
motions in outer flow is much stronger in the Couette flows than
the Poiseuille flows. As Re increases the outer region production of
〈u′2〉 increases, and the produced energy is transported to the near-
wall region by the turbulent transport and viscous transport. Also,
inverse energy transfer from intermediate scales to larger scales oc-
curs from the buffer layer to the outer region in both flows.

Our observations suggest there are production and transport
mechanisms in outer layer driven by large-scale motions, which
become stronger with increasing Re. If the energy transport from
outer to near-wall regions in very high Re Poiseuille flow becomes
as strong as in Couette flow, near-wall flow dynamics which has
been studied with low Re flows may need to be revisited. Also, it
was not in the scope of current work, but we found peak separation
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Figure 2. 1D y- and kx-premultiplied spectra of terms in Reynolds stress transport equations; (top) P5200, (bottom) C500
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in energy spectra of 〈v′2〉 and 〈w′2〉 in C500 cases. Such peak sep-
aration of 〈v′2〉 and 〈w′2〉 is possible in much higher Re Poiseuille
flows. The study of 〈v′2〉 and 〈w′2〉 remains as the future work.

Studying the role of large scale motion is important in high Re
flows, but there are challenges. Most of all, it is not clear how large
the large scales may be. Since inverse energy transfer is observed in
large-scale motions, there may be no such thing as a large enough
simulation domain size in Couette flow. Fortunately, the small-scale
motion is universal in Poiseuille and Couette flows. With a good
large eddy simulation (LES) model, developed and tested for high
Re flows, then it can be extended to other wall-bounded turbulent
flows. Hence, to study large-scale motions in various wall-bounded
turbulence, using well-validated LES seems more plausible than us-
ing DNS.
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