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ABSTRACT
In order to locate food and mating partners, animals

and insects adopt different strategies which help them to ef-
fectively track down the source of the desired chemical sub-
stance. They utilize combined information about the wind
direction and the odor concentration. Under turbulent con-
ditions, the advection dominates the dispersion of the con-
centration, and the wind direction can be a most reliable
parameter used to track the plume. Inspired by animal be-
havior, numerous algorithms have been proposed for plume
tracking in both air and water, mostly for two-dimensional
(2D) motions. In this study, we consider a turbulent chan-
nel flow in the presence of a point scalar source. We have
conducted direct numerical simulations (DNS) in order to
perform a systematic assessment of various existing algo-
rithms, and provide a reliable comparison. Particular focus
is laid on the effect of the velocity ratio between flow and
sensor movement on the estimation performance. In addi-
tion, we propose an extension of one of these algorithms in
three dimensions, for which a similar analysis is considered.

INTRODUCTION
The olfactory sense plays a crucial role in the survivor

of animals. It is extensively used for a variety of activities
such as food tracking, predators avoidance and reproduc-
tion. Some animals, such as dogs and rats, are known for
exhibiting superior sensitivity. As a result, it is common
nowadays for humans to use dogs in a number of tasks,
such as rescue operations, detecting landmines or pursuing
criminals. Concurrently, the rapid progress in robotics and
electronics suggests that robots can potentially be used to
fulfill these tasks in the future with a number of advantages
relative to animals. For example, animals require exten-
sive training which is associated with significant time and
financial resources. In addition, they suffer from fatigue
and they can not effectively operate under hazardous condi-
tions, such as toxic environments.
Motivated by the effectiveness of animal search strategies,
researchers focused on developing odor source localization
algorithms that mimic the behavior of the animals and in-
sects. A widely adopted category of algorithms is reactive
algorithms. They are called ‘reactive’ because their actions
are reactions directly related to the sensory input taken from
the environment: In the presence of wind, advection dom-

inates the slow diffusion rate, carrying the molecules of
the substance and spreading them in regions downstream
of the source, often yielding elaborate mixing patterns in
turbulent flows. These patterns can take the form of iso-
lated packets, that is regions of high concentration sur-
rounded by regions of very low concentration, forming a
rather complex landscape. Under these conditions, the di-
rection of the airflow carrying the substance molecules is
more reliable directional cue than concentration gradients
in finding the substance source, as recommended by Ishida
et al. (2012). Consequently, many insects, such as moths,
evolved the anemotactic strategy, that is the insect simply
moves upwind in the presence of an attractive odor, as noted
by Kennedy & Marsh (1974). When sensing a chemical
patch, moths surge upwind, while during the absence of
patch detection, they either perform crosswind motions with
gradually increasing widths, a behavior called casting. An-
other typical searching behavior is a spiraling motion, com-
monly observed in walking insects, such as ants, as denoted
by Muller & Wehner (1994), that is move around circles
with progressively increasing radius. In addition, Voges
et al. (2014) proposed strategies which combine surge up-
wind and a two-step plume-tracking strategy, consisting of
crosswind casting (zigzaging) followed by spiraling move-
ments. Consequently, various reactive strategies have been
proposed based on the insects movements.

A well-known advantage of conducting experiments
against numerical simulations is that they allow testing of
algorithms in a more natural and complex environment. On
the other hand, in computations we can control a flow con-
dition and perform systematic evaluation of different al-
gorithms under reproducible conditions. This provides a
unique opportunity to understand the characteristics of lo-
cating a scalar source in each algorithm by comparing the
sensor movement with the surrounding instantaneous flow
and concentration fields. Such information should be use-
ful for optimizing various parameteres in existing olfactory
searching algorithms, and also developing novel strategies.

NUMERICAL SET UP
We consider a turbulent channel flow with an embed-

ded point source that releases a passive scalar. The friction
Reynolds number Reτ = uτ h

ν
is 150, where ν is the kine-

matic viscosity, uτ is the friction velocity and h is the half-
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Figure 1: Schematic of the computational domain.

channel height. The Schmidt number Sc = ν

Γ
, where Γ is

the molecular diffusivity, is set to unity, leading to a Peclet
number Pe = uτ h

Γ
= 150. The dimensions of the domain,

normalized by the half-channel height, are 5π along the
streamwise (x) direction and π along the spanwise (z) di-
rection. The flow configuration is shown in Fig. 1. The
velocity and scalar equations are solved using a pseudo-
spectral code. Fourier modes are adopted for the spatial
discretization of the streamwise and spanwise directions,
while Chebyshev polynomials are used in the wall-normal
direction (y). The number of grid points is 197× 97× 96
in the streamwise, wall-normal and spanwise directions re-
spectively. In order to ensure adequate resolution, the grid
is stretched along the wall-normal direction; The cells adja-
cent to the wall are placed at ∆y+ ≈ 0.08, where superscript
( .)+ indicates quantities expressed in wall units. Along the
streamwise and spanwise directions, uniform grid spacing
is adopted.

The flow is maintained by a uniform pressure gradient
imposed in the streamwise direction x. Regarding the veloc-
ity field, no-slip boundary conditions are applied at the top
and bottom walls and periodic conditions are imposed in the
other two directions. For the scalar field, zero-flux bound-
ary conditions are imposed at the solid walls, whereas the
scalar is removed in the proximity of the domain bound-
aries in the other two directions in order to restrict it from
re-entering the domain from the opposite side.

RELEASE POINTS
We have performed a number of numerical experi-

ments for each configuration, each time introducing the
sensor at a different initial positions. The initial positions
are isotropically distributed on a circle around the reference
point for two-dimensional search and on a sphere for three-
dimensional search, where the radius equals half the dis-
tance covered during a singel time step by the sensor when
it is located inside the plume, denoted as do.

Mean values of various statistics relevant scalar source
identification were evaluated by averaging over successful
runs. For the two-dimensional search, 30 initial sensor po-
sitions are chosen for each reference point at planes located
at different channel heights (Fig.2) where the scalar source
is placed at y+ = 10,30 and 150 respectively. The stream-
wise and spanwise coordinates of the source location are
x = 1.15 and z = π/2 respectively and are kept the same for
all channel heights. The sensors are restricted to move in
the corresponding x-z plane of the scalar source.

For the three-dimensional search, 32 initial sensor po-
sitions were chosen for a single reference point, whereas the
sources location is placed at y+ = 150. Details regarding

(a)

(b)

(c)

Figure 2: Release points of the sensors at planes ex-
tracted at (a) y+ = 10, (b) y+ = 30 and (c) y+ = 150.
Regions where concentration exceeds the threshold
value are indicated by red color, where blue color
is used to indicate regions with concentrations below
the threshold value. Symbols S and A-D indicate the
source and the release points respectively.

the spatial coordinates of the reference points at the corre-
sponding x-z plane are shown in Table 1.

Table 1: Locations of reference points for sensor re-
lease (x, z) for all the cases

Configuration A B C D

Two-dimensional search

y+ = 150 (7,1.62) (8.7,1.62) (7,1.37) (8.3,1.27)

y+ = 30 (7,1.62) (8.7,1.67) (8.7,1.20) -

y+ = 10 (5,1.52) - - -

Three-dimensional search

y+ = 150 (7,1.22) - - -

SEARCH ALGORITHMS
Numerous searching algorithms can be found in litera-

ture in which the searcher adopts different behaviours, de-
pending on its state. For simplicity, we have chosen surge-
spiralling and casting algorithms, since they consider only
two states; when inside the plume (sensing event) and when
outside the plume (signal lost).

With respect to searching strategies, we have chosen
surge-spiralling and casting algorithms, due to their sim-
plicity and a small number of adjustable parameters in them.
The casting algorithm (Fig. 3a) performs crossflow motions
outside of the plume. If the sensor detects concentration
above the threshold value, then it moves at an angle β with
respect to the upflow direction when it is outside the plume.
The sign of β is taken to be either positive or negative, de-
pending on the relative angle between the sensor’s heading
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direction right after it enters the plume and the flow direc-
tion, so that the sensor moves towards the inner part of the
plume, as indicated in Fig. 3a. This behavior is repeated un-
til the sensor is out of the plume for a distance dlost . Then,
the sensor begins to cast, meaning that it starts traveling
back and forth across the flow direction (±π/2 to upwind)
in a progressively increasing amplitude until the plume is
found, as suggested by Kennedy & Marsh (1974).

In the current study, the heading direction of the sensor
is determined by the following expression:

θs = θ f +π±β , (1)

where θs denotes sensor’s heading direction, θ f corre-
sponds to the flow direction, where β is chosen to be con-
stant and equal to π/3, a choice also adopted by Russell
et al. (2003). Eq. (1) is adopted once the sensor enters the
plume and is kept unchanged until it exits. In order to ac-
count for the continuous increase of the crosswind scanning
widths during the casting process, we have adopted the fol-
lowing iterative expression

dη+1
c = dη

c +nrdo , (2)

where η denotes the current step after the sensor began to
cast, and nr denotes the progressive increase of the step size.
For our computations, this value was set to 0.8 and it was
kept fixed through all computations. Also, the sensor was
considered off track after moving two consecutive steps out-
side of the plume, thus defining the distance dlost .

We have also considered the surge-spiralling algorithm
(Fig. 3b). This algorithm can adopt three different behav-
iors, depending on whether it is located inside or outside the
plume. If the search starts from outside the plume, the sen-
sor performs an outward Archimedean spiral motion with a
spiral gap denoted by dgap,1. If the sensor detects a concen-
tration larger than the threshold, it surges upwind (β = 0 in
eq. (1)) with a step size do chosen to equal the one adopted
for the casting algorithm. Again, the heading direction θs
is determined right after the sensor enters the plume, and it
remains fixed until the sensor loses contact with the plume
after it covers a distance dlost outside the plume, in which
case the sensor’s behaviour switches to spiralling motion.
This time, the sensor adopts a smaller gap dgap,2 compared
to the initial search gap dgap,1, since the sensor has just ex-
ited the plume and it is assumed to be close to it, in con-
trast to the initial search starting outside the plume, in which
case no prior information regarding plume’s location can be
used. The Archimedean motion is described by the follow-
ing equation

r = aθ , a = dgap/2π , (3a)

θ = η π/4 , (3b)

where r represents the radius of the spiral motion, a is a
fixed constant and θ is the sensor turning angle.

We have also developed an extension of the surge-
spiralling algorithm to account for three-dimensional
searches. Briefly, the sensor surges upwind when it is in-
side the plume, while it performs helical motion outside of
the plume, as shown in Fig. 6 in the results section. In or-
der to construct a suitable expression for the helical motion,

(a)

(b)

Figure 3: Sketch of (a) casting and (b) surge-spiraling
(SS) algorithms, as provided by Lochmatter et al.
(2008). The stars indicate where the wind direction
is measured, whereas the grey region indicates the
plume region.

we decompose the sensor motion into two parts, as shown
in Fig. 4. The first considers the motion along a plane ori-
ented perpendicular to the upwind direction, with local co-
ordinates denoted as (x′,y′), and z′ is aligned to the upwind
direction. The upwind direction was evaluated right after
the sensor traveled distance dlost outside the plume and is
off target, and it remained fixed until the sensor re-entered
the plume. Based on the local coordinate system, the sensor
performs a spiralling motion as described by eq. (3), while
the values for dgap,1 and dgap,2 are chosen to be equal to
the corresponding values adopted for the two-dimensional
cases. The second part considers the sensor motion along
the upwind direction, denoted as z′. Many different expres-
sions have been considered for the determination of z′, how-
ever for the current study we have adopted

z′ = γθ , (4a)

where θ is the turning angle of the Archimedean motion,
defined in Eq. (3b), and γ is a constant that determines how
fast the sensor evolves along the upwind direction. After
evaluation of the sensor location in the local frame, the cor-
responding global coordinates are obtained through the use
of Euler angles. These angles are used to define the rotation
matrix, denoted as Ri j, and the relation between the global
and the local coordinates is given by

x′i = xo
i +Ri jx′j , (5)

where xo
i is the location in global coordinates at which the

sensor was deemed off track and started performing the he-
lical motion.

We deem the search successful if the sensor manages to
approach the source within a distance of 0.2 times the half-
channel height h. In order to consider reference points suf-
ficiently far away from the source, a large amount of DNS
data was stored, corresponding to a time period T+ = 60. If
the sensor did not locate the source within this time horizon,
the search was declared unsuccessful.
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Figure 4: Sketch showing details of the decomposition
process. The coloured region indicates the plume re-
gion.

One of the main objectives of the current study is to in-
vestigate the impact of the flow field on the search process.
For example, if the sensor moves very rapidly, the flow is
practically unchanged during the time horizon of the search,
a limit at which the flow field can be assumed ”frozen”. On
the other hand, if the sensor is moving very slowly it prac-
tically senses the presence of an averaged field. The third
case is when the velocities of the sensor and the flow field
are comparable. In this case, and for a sufficiently large
number of steps, the evolution of the flow is expected to
influence the performance of the algorithms. Based on the
above arguments, an important parameter that can describe
these effects is the velocity ratio, defined as

Rv = us/u f , (6)

where us is the sensor’s averaged velocity during the search
and u f is a characteristic flow velocity. The reason for se-
lecting the averaged and not the instantaneous sensor ve-
locity, is because the sensor keeps a fixed speed while it
is moving inside the plume, although its velocity can vary
during the reacquisition process. We have chosen the refer-
ence points and the algorithms parameter carefully so that,
for the intermediate state the relative velocities are com-
parable, in order to account for the effect of unsteadiness.
Very large values of this parameter correspond to the limit
of a ”frozen” field as described above, whereas a value very
close to zero suggests a very slow marching of the sensor.
For the two-dimensional computations, the flow velocity is
chosen to equal the mean streamwise velocity at the specific
x-z plane, whereas the centerline mean velocity is adopted
for the three-dimensional computations. Lastly, it is impor-
tant to note that the frozen field corresponds to a snapshot
of the turbulent flow field.

PERFORMANCE INDICES
During the evaluation process, a number of perfor-

mance indices are computed. The first index is the success
rate, defined as the ratio of the successful runs to the total
number of runs, which measures the robustness of the cor-
responding algorithm. As already mentioned above, the run
is considered to be successful if the moving sensor reaches
the vicinity of the source within T+ = 60. Additional im-
portant parameters are the distance ratios, defined as

Rin = Lin/L , Rout = Lout/L , R =
L
D
, (7)

where Lin is the distance covered inside the plume, Lout is
the distance covered outside the plume, L is the total dis-

tance and D is the displacement of the robot from the re-
lease point to the source. The minimum value of R is unity,
a case at which the sensor surges straight upwind during the
entire process.

RESULTS
All algorithms use binary odor information, that is they

detect odor only if it exceeds a threshold value, while ignor-
ing the gradation in concentration. In order to evaluate the
performance of the algorithms, the computations used two
different threshold values, 5% of the source intensity for
the two-dimensional computations and 10% of the source
intensity for the three-dimensional case.

Two dimensional search
Firstly we consider the two-dimensional motions. Due

to the large number of reference points and performance
indices, here we show selected results which illustrate the
main trends of the analysis. We show results for searches at
all three different channel heights. As discussed in detail by
Cerizza et al. (2016), the wall-normal position significantly
influences scalar dispersion and diffusion. Table 2 lists the
performance indices for the case where the sensor is re-
stricted to move on the x-z plane located at y+ = 150 (chan-
nel centerline), starting from the reference point D. We
have chosen this particular point, because it is positioned
sufficiently far from the source so that the impact of the un-
steadiness of the flow on the searching performance is ap-
preciable. Also, this point is chosen so that the sensor starts
its search outside of the plume, as shown in Fig 2c. We
observe that the choice of Rv influences the performance of
the algorithm. In particular, the casting algorithm provides
higher success rate for finite velocity ratio compared to the
frozen case, even though the sensor spends more time in-
side the plume for the frozen case compared to the unsteady
one. Two main processes characterize the evolution of the
field: diffusion and dispersion. At the channel centerline,
dispersion provides an effective redistribution of the scalar
field by the velocity to points such as D in Fig. 2c which
is initially located away from the plume centerline. Better
performance is achieved for Rv = 0. This outcome was ex-
pected, since at this limit the scalar field is assumed to be
averaged, which means that the plume becomes continuous
while it extends to large distances, as shown in Fig. 5.

Table 2: Estimation performance when a sensor starts
inside a scalar plume at y+ = 150

Algorithm

Indices
Success Rate Rin Rout R

Casting

Rv→ ∞ 8/30 0.381 0.619 4.425

Rv = 8.90 30/30 0.266 0.734 6.451

Rv→ 0 30/30 0.519 0.480 3.472

Surge-Spiralling

Rv→ ∞ 30/30 0.714 0.286 1.285

Rv = 4.49 30/30 0.477 0.523 1.927

Rv→ 0 30/30 0.831 0.169 1.08
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Figure 5: Mean scalar field along the x-z plane at
y+ = 150. Regions where concentration exceeds the
threshold value are indicated by red color, where blue
color is used to indicate regions with concentrations
below the threshold value. Symbols S and D indicate
the source and the release point respectively.

Table 3 shows details of the performance indices when
the search is performed on a plane located outside the buffer
layer, at y+ = 30. Here we show results when the reference
point is located at C based on the same arguments as for the
centerline case. Again, we see a similar impact of the ve-
locity ratio on the success rate as the previous case, while
again best performance is achieved at the limit of the aver-
aged field. Table 4 shows the corresponding comparison

Table 3: Estimation performance when a sensor starts
outside a scalar plume at y+ = 30

Algorithm

Indices
Success Rate Rin Rout R

Casting

Rv→ ∞ 30/30 0.341 0.686 5.263

Rv = 12.05 24/30 0.216 0.784 7.692

Rv→ 0 30/30 0.531 0.469 3.460

Surge-Spiralling

Rv→ ∞ 0/30 - - -

Rv = 4.86 30/30 0.499 0.501 1.776

Rv→ 0 30/30 0.863 0.137 1.134

for the plane located inside the buffer layer at y+ = 10. We
observe that the algorithm’s performance is practically in-
sensitive to the choice of velocity ratio, leading to similar
values for the performance indices. This happens mainly
because the diffusion effects become significant close to the
wall, resulting to an excessive dissipation of the scalar field,
which makes the scalar field more smoother, and closer to
the time-averaged field.

Three dimensional search
Next, we have tested the performance of the proposed

extension of the surge-spiralling algorithm for three dimen-
sional motions. We consider the case where the source is
placed at y+ = 150, while the sensor release point is cho-
sen to be initially outside of the plume. The scalar-detection
threshold is 10% of the source intensity. Table 5 reveals the
robustness of the proposed algorithm for all velocity ratios,

Table 4: Estimation performance when a sensor starts
inside a scalar plume at y+ = 10

Algorithm

Indices
Success Rate Rin Rout R

Casting

Rv→ ∞ 30/30 0.709 0.290 2.755

Rv = 5.16 30/30 0.668 0.332 2.890

Rv→ 0 30/30 0.687 0.313 2.786

Surge-Spiralling

Rv→ ∞ 30/30 1.0 0.0 1.009

Rv = 4.15 30/30 1.0 0.0 1.009

Rv→ 0 30/30 1.0 0.0 1.005

Table 5: Estimation performance for 3D search

Algorithm

Indices
Success Rate Rin Rout R

Rv→ ∞ 32/32 0.392 0.608 2.119

Rv = 4.08 32/32 0.363 0.637 2.336

Rv→ 0 32/32 0.546 0.454 1.818

even though the sensor spends most of its time outside the
plume. Again, best performance is observed for Rv = 0. In
Fig.6 we show the path taken by the sensor using the three-
dimensional extension of the surge-spiraling algorithm in
order to locate the source.

CONCLUSIONS
In the present study, we tested existing olfactory algo-

rithms using velocity and scalar fields obtained by DNS of a
fully developed channel flow. Several performance indices
were proposed and evaluated. In addition, the ratio between
the sensor velocity and a characteristic mean velocity of the
flow field is taken into account in order to investigate the
influence of the unsteadiness of the flow field on the al-
gorithm performance. For the two-dimensional computa-
tions, three planes were chosen, located at different chan-
nel heights. We have observed that the evolution of the
flow field significantly influences the results for the cases
where the planes of motion are located outside the buffer
layer, which can be attributed to dispersion being dominant
in these regions: Dispersion advects the scalar to regions
where diffusion alone would not reach, thus increasing the
probability for the sensor to detect a signal above the thresh-
old value. For the case where the source is located inside the
buffer region the diffusion effects become important, mak-
ing the scalar field smoother so that the algorithm becomes
insensitive to the value of the velocity ratio parameter. We
have also proposed an extension of the surge-spiralling to
three dimensional searches. The algorithm was shown to
be robust regardless the choice of the velocity ratio. The
present results suggest that the velocity ratio between sensor
movement and characteristic flow velocity should be taken
into account, and an employed algorithm should be chosen
accordingly in designing scalar source estimation system.
Although we observe different trends in three-dimensional
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(a)

(b)

Figure 6: Trajectory of the sensor until it reached the
source. Red sphere indicates the source, where green
region indicates the plume. (a) and (b) show the same
path, but from different viewpoints.

search from those in two-dimensional search, more detailed
analysis is necessary to understand how the increase in
the dimensionality influences the resultant searching perfor-
mance.
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