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ABSTRACT
Three-dimensional bluff body wakes are of key importance due

to their relevance to the automotive industry. Such wakes have both
large pressure drag and a number of coherent flow structures as-
sociated with them. Depending on the geometry, these structures
may include both a bistability resulting from a reflectional sym-
metry breaking (RSB), and a quasi-periodic vortex shedding. The
authors have recently shown that the bistability may be modelled
by a Langevin equation and that this model enables the design of a
feedback control strategy that efficiently reduces the drag through
suppression of asymmetry. In this work the modelling approach is
extended to the vortex shedding, capturing both the forced and un-
forced behaviour. A control strategy is then presented that makes
use of the frequency response of the wake, and aims to reduce the
measured fluctuations associated with the vortex shedding. The
strategy proves to be effective at suppressing fluctuations within
specific frequency ranges but, due to amplification of disturbances
at other frequencies, is unable to give drag reduction.

INTRODUCTION
The flow over three-dimensional bluff bodies is of particular

interest due to its relevance to automotive vehicles. Such bodies
experience large pressure drag due to the large region of separated
flow in the wake. For automotive vehicles operating at motorway
speeds, this pressure drag is responsible for a significant proportion
of the fuel consumption, therefore its reduction is a topic of key
interest.

Three-dimensional bluff body wakes exhibit a number of key
coherent structures, two of which are the static asymmetry and
the quasi-oscillatory vortex shedding. Both features arise initially
at very low Reynolds numbers (Re) as respectively a reflectional
symmetry breaking (RSB) mode (Grandemange et al., 2012), and
a temporal symmetry breaking, yet both are also observed at the
much higher Reynolds numbers typical of road vehicles. In the
flows over rectilinear bluff bodies, the RSB mode is observed as
an instantaneous asymmetry, mainly appearing in the recirculation
region as displayed in figure 1(a). Under aligned flow conditions
the wake flips randomly between two asymmetric states, each mir-
ror symmetric with respect to the other, a phenomenon known as
wake bistability. The instantaneous asymmetry of the wake leads
to a lateral force and contributes to the pressure drag on the body.
The feature is quite general, having been observed for a range of
three-dimensional bluff bodies of widely varying geometries (Rigas
et al., 2015). Superposed on this, the vortex shedding is seen as

quasi-periodic oscillations of the wake, occuring in both the lateral
and the vertical dimensions (Grandemange et al., 2013; Volpe et al.,
2015). The relative importance of these two features with respect to
the pressure drag on the body remains unclear.

The objective of this research is to develop efficient drag re-
duction methods for three-dimensional bluff bodies, without mak-
ing large geometric modifications. A promising method for doing
this involves suppression of coherent structures, including the RSB
mode and vortex shedding. Some passive methods such as a control
cylinder in the wake (Cadot et al., 2015) or a base cavity (Evrard
et al., 2015) have already shown promising results for both the sup-
pression of the asymmetry and pressure drag reduction. However
while effective, such passive methods may involve large geometric
modifications and the exact requirements for suppression of the co-
herent structures remains unclear. This motivates a careful analysis
of the physics of coherent structures in the wake, and the use of ac-
tive feedback control for their suppression. In this work we develop
stochastic models to describe the coherent structures before making
use of these models in feedback control design. We will recap some
of the recent work of Brackston et al. (2016) for the modelling and
control of bistability, and extend the approach to the vortex shed-
ding.

EXPERIMENTAL SETUP
Investigations and feedback control are implemented experi-

mentally on a scaled down, flat-back Ahmed body (Ahmed et al.,
1984) of the proportions used in many other studies (Grandemange
et al., 2012; Cadot et al., 2015), giving Re of O(105). This ex-
perimental setup is shown in figure 1(b). A force balance mea-
sures the total force and moment acting on the body while 8 Ende-
vco 8507C pressure transducers take fluctuating pressure measure-
ments, and an ESP-DTC pressure scanner supplies 64 static pres-
sure measurements distributed over the model base. Forcing of the
wake is achieved using two flaps located at the trailing edges of the
body, each 19 mm in stream-wise length and running the length of
the edges to which they are mounted. The flaps may be positioned
either on the lateral edges for control of the bistability and lateral
shedding, or on the top and bottom edges for control of the vertical
shedding. The flaps are mounted on hinges and driven by internal
motors that regulate their motion. The angle of each flap (θ ) is mea-
sured using a 12 bit magnetic encoder while the power supplied to
the flaps is monitored through measurement of the supply voltage
and current.
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Figure 1. Plan view of the experiment including an average example of the bistable feature of the wake (a), and the overall assembly and
detailed view of the base (b).

STOCHASTIC MODELLING OF COHERENT STRUC-
TURES

A first step in the understanding and control of coherent struc-
tures in a turbulent flow, is the development of low-order models
for their dynamics. Such models may give insight into the nature of
feedback control strategies that may then be applied. A promising
approach is based upon the observation that these coherent struc-
tures in the turbulent flow are often the persistence of the bifurca-
tions seen at very low Re (Rigas et al., 2014). This allows the devel-
opment of phenomenological models that make use of the equations
governing these low Re bifurcations, with the addition of stochastic
terms to model the effect of turbulent fluctuations. We will discuss
below the application of such an approach to the modelling of the
RSB mode and the vortex shedding.

Bistability
For the Ahmed body of this experiment, the RSB mode gives

a bistable wake in the lateral dimension. This feature of the wake
may be quantified in terms of a metric r, defined as the lateral (y)
location of the center of pressure on the model base:

r(t) =
∫

yp(y, t)dA/
∫

p(y, t)dA. (1)

Applying the stochastic modelling approach, we may write an equa-
tion for the RSB mode of the wake, quantified by r, as the equation
governing a pitchfork bifurcation with the addition of a stochastic
forcing. Additionally the influence of the flaps is included via a term
bθt−τ , capturing the linear influence of the flaps and incorporating
an advective time delay τ:

ṙ = αr−λ r3 +bθt−τ +σξ (t). (2)

As detailed in Brackston et al. (2016), the parameters from
this model may be found be examining the probability distribution
(PDF) of the metric r as well as the frequency response between θ

and r. Given the model of (2), the steady-state PDF for r is given
by a Fokker-Planck equation which may be shown to be written as:

P(r) =C exp
(

α

σ2

(
r2− 1

2
λ

α
r4
)
+

2bθ

σ2 r
)
, (3)
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Figure 2. Unforced PDF for the metric r for three different Re
along with the fit from the Fokker-Planck equation of (3).

where C is a normalisation constant. By comparing this analytical
distribution with the experimental data the ratios σ2/α and λ/α

may be determined. The time-scales defined by α and τ may then
be found from the frequency response.

The PDF of the unforced wake is displayed for a limited range
of Re in figure 2. Also displayed is the fit from the Fokker-Planck
equation, demonstrating the good agreement that may be obtained
under unforced conditions for which θ = 0.

It is also important to note that the model accurately captures
the forced response of the wake. Through static offsets the flaps can
induce the wake to remain in one or other of the two asymmetric
states, an effect that may again be described by the Fokker-Planck
equation with non-zero θ . Under harmonic forcing the flaps induce
repeated flipping of the wake between these two states. Under such
forcing the measured response acts something like a 1st-order low-
pass filter with a large response at low frequencies that reduces as
the forcing frequency increases above α .
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Vortex Shedding
The stochastic modelling approach may also be extended to

the vortex shedding in the wake. In this case the initial bifurcation
is a Hopf bifurcation, leading to limit cycle behaviour and described
by a complex Stuart-Landau equation. The shedding may therefore
be modelled by such an equation with the addition of a stochastic
forcing term:

ẋxx =αααxxx−λλλxxx|xxx|2 +uuu(θ)+σσσξ (t), (4)

where all bold symbols denote complex quantities. A complex
Stuart-Landau equation such as this is known to be capable of mod-
elling self-excited oscillations (Li & Juniper, 2013), and will gener-
ate limit-cycle behaviour with a fixed frequency ω0 under unforced
conditions (i.e. θ = 0). The unique addition here is to include the
stochastic term, just as for the bistability modelling, the effect of
which is to spread the frequency content around ω0. This gener-
ates the broadband oscillations observed for vortex shedding in tur-
bulent flows. A simulated time-series and power spectral density
for the imaginary part of xxx are displayed in figure 3. The results
demonstrate the broadband oscillations that the model generates,
demonstrating that the model may qualitatively capture the vortex
shedding behaviour observed in many turbulent wake flows.

In addition to the unforced response, of key interest for feed-
back control is the response of the model in (4) to forcing, quan-
tified by the frequency response. Applying a purely real ur(t) =
U sin(ωt), and taking as output the imaginary part of xxx, we may
evaluate the frequency response displayed in figure 4. The sim-
ulated results here demonstrate that despite the cubic nonlinearity
present in the underlying equations, the input-output behaviour may
be captured accurately by the frequency response of a linear 2nd-
order oscillator.

We may compare the simulated results from (4) with experi-
mental data for the harmonically forced wake. The experimental
frequency response for several forcing amplitudes is displayed in
figure 5. The interaction of the flaps with the vortex shedding in the
wake is seen for StH ≈ 0.2, at which the amplitude of the response
is seen to reach a maximum, indicative of a resonance of the vor-
tex shedding. Coinciding with this resonance is a decrease of the
phase angle from −2π to around −3π . This coincidence of a peak
in the amplitude and −π shift in the phase is just as observed for
the simulated results displayed in figure 4.

Frequency Response Interpretation
The models described above give nonlinear stochastic equa-

tions for the dynamics of the bistability caused by the RSB mode
and the quasi-oscillatory vortex shedding. Despite the nonlinear-
ity of the underlying models and flow, it is important to note that
we can still deduce linear input-output behaviour in the form of the
frequency response. We may therefore hope to explain fully the
features of the experimental frequency response of figure 5, based
upon the models for the flow.

One significant feature of the experimental frequency response
is the sharp trough in |G| and the accompanying phase shift seen at
StH ≈ 0.09. This behaviour is indicative of what are known as right-
half-plane zeros in control theory, and can result from a cancellation
between two independent sets of dynamics, dominant over different
frequency ranges. Such a pair of dynamics may indeed result from
the combined ability of forcing flaps to alter both the orientation of
the separation bubble at low frequencies, and interact with the oscil-
latory vortex shedding at higher frequencies. As discussed above,
we may expect the frequency response of each of these features to

behave like 1st and 2nd-order linear systems, giving the following
transfer functions:

G1(s) = g1
1

1+ sT1
=

n1

d1
, (5)

G2(s) = g2
1

1+2ζ sT2 + s2T 2
2

=
n2

d2
. (6)

In order for a cancellation to occur, the two transfer functions must
be added together, G = G1 +G2. This is based on the idea that
the two features are essentially independent, therefore the total re-
sponse of the wake may be considered as the sum of the two re-
sponses. The poles of the resulting transfer function G will be the
poles of the two constituent transfer functions, however the zeros
will not be the same but are instead given by the roots of

n(s) = g1

(
1+2ζ sT2 + s2T 2

2

)
+g2 (1+ sT1)

= g1 +g2 +(2g1ζ T2 +g2T1)s+g1T 2
2 s2

= g
(

1+2ζzTzs+T 2
z s2
)
. (7)

The criteria for the pair of RHP zeros observed experimentally are
therefore,

g1 +g2 = g > 0, (8a)

2g1ζ T2 +g2T1 = 2gζzTz < 0, (8b)

g1T 2
2 = gT 2

z > 0. (8c)

These criteria may be satisfied by appropriate choice of the param-
eters, and furthermore the properties of the response may be chosen
to fit with observations. For example, if we specify the DC gain g,
the properties of the zeros (specified by Tz and ζz) and the properties
of the poles (specified by ζ and T2), we have enough information
to determine all remaining parameters. The black line displayed in
figure 5 is just such a fit composed of the sum of 1st and 2nd-order
linear systems. This fit can be seen to capture the key behaviour in
both magnitude and phase.

While the data displayed in figure 5 is for the case of vertical
forcing, the frequency response for lateral forcing exhibits the same
key features. In both cases, the dynamics of the wake may therefore
be considered to consist of the sum of low-frequency reorientation
of the separation bubble, either through continuous deflection or
flipping between bistable configurations, and high-frequency inter-
action with the vortex shedding.

FEEDBACK CONTROL
Given the modelling and our understanding of the wake fea-

tures, feedback control may proceed along one of two approaches.
Either the static asymmetry of the wake may be targeted, aiming
to achieve a more symmetric wake on average, or we may target
the unsteadiness associated with vortex shedding. The former of
these strategies will be applied in the lateral dimension in which the
bistability is present, while the latter will be applied in the verti-
cal dimension in which the interaction of the flaps and shedding is
stronger. A schematic of the block diagram that applies for both
cases is displayed in figure 6. In this schematic the wake is mod-
elled as the sum of two transfer functions, G1 capturing the response
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Figure 3. Unforced time series (left) and power spectral density (right) for the variable y = asin(ψ) of (4).
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Figure 4. Frequency response of the model (4) between real input
ur = U sin(ωt) and imaginary output xi. Also shown is a linear
2nd-order fit to the data.

of the low-frequency behaviour of the bistability or static wake de-
flection and G2 capturing the interaction of the flaps with the vortex
shedding. The disturbances d describe all other unmodelled dynam-
ics entering the measurement m. The transfer function A describes
the dynamics of the actuators while K is the feedback controller.

Bistability
Feedback control of the bistability in the wake may be moti-

vated by the model of (2), which suggests that the RSB mode has an
unstable equilibrium at r = 0, corresponding to a symmetric wake.
The model of (2) may be linearised and put into a form suitable for
control design as:

G1(s) =
r̄(s)
θ̄(s)

=
b(2/τ− s)

(s−α)(2/τ + s)
, (9)

Figure 5. Experimental frequency response between forcing with
the top/bottom flaps and the vertical pressure gradient mv. For com-
parison the composite model evaluated as the sum G1(s)+G2(s) is
also shown.

It may be shown (Brackston et al., 2016) that a suitable proportional
feedback is sufficient to stabilise this system, implying a more sym-
metric wake. In practise however, care must be taken to take into
account the interaction between the flaps and wake at higher fre-
quencies, as described by G2. The results of such a control strategy
are demonstrated in figure 7, which shows the probability distribu-
tion of the pressure metric r and the power spectral density, both
with and without control. The results demonstrate that effective
control may render the flow much more symmetric on average, but
that additional fluctuations are generated at higher frequencies of
around StW ≈ 0.15. These fluctuations provide a limitation to the
efficacy of the control in providing a drag reduction. A maximum
drag reduction of 2% is obtained via this strategy which, although
modest, is energetically efficient as the power consumed by the flaps
is only 24% of that saved through drag reduction.
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Figure 6. A schematic of the feedback control loop comprising the wake G1,2, actuator A and feedback controller K. G1 captures the
low-frequency dynamics of the bistability (lateral) or near-wake deflection (vertical), while G2 captures the vortex shedding and shear layer
dynamics at higher frequencies.
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Figure 7. Comparison of the natural and controlled flow: (a) the PDF and (b) the power spectrum for r.

Vortex Shedding
The alternative control strategy is to target fluctuations directly,

specifically aiming to reduce the fluctuations at St ≈ 0.2 associated
with the vortex shedding. To do this we may design controllers
based on the sensitivity function S(ω). This is an approach that has
been successfully applied before in fluid flows (Dahan et al., 2012),
and may be based purely upon empirical linear models of the input-
output behaviour. In this case we therefore do not seek to linearise
(4), but rather make use of the frequency response characteristics
discussed above and displayed in figure 5. For the application of
this approach using the top/bottom flaps G1 is a simple 1st-order
low-pass filter while G2 is a second order oscillator, chosen to fit
the frequency response in figure 5. The pressure measurement m is
ytaken as the vertical pressure gradient on the base of the body.

For the feedback-control configuration displayed in figure 6 the
sensitivity function is defined as:

S(ω) =
1

1+(G1 +G2)AK
. (10)

This is the transfer function from disturbances d to the measurement
m, and therefore gives the ratio of the measured fluctuations with
and without feedback control. For frequencies at which S(ω) > 1
fluctuations will be amplified while for those at which S(ω) < 1,
they will be suppressed. Through control design methods such as
H∞ loop-shaping, we may design controllers that have S(ω) < 1
over particular frequency ranges such as St ≈ 0.2.

A total of 123 controllers were tested, each giving a slightly
different S(ω). Each controller therefore provided amplification
and attenuation of measured fluctuations over slightly different fre-
quency ranges. Despite the large number of variations trialled, none
of the controllers were able to give a measurable drag reduction
and, moreover, most gave a drag increase. The PSD from once

such controller is displayed in figure 8. The comparison between
the controlled and uncontrolled spectra demonstrate that the con-
troller has suppressed measured fluctuations in the frequency range
around StH ≈ 0.2, although it has significantly amplified fluctua-
tions at other frequencies. This is much the same issue that was
found for the case of bistability control and it is likely that these
additional fluctuations lead to the drag increase. Unfortunately, in
both cases some amplification is essential due to the waterbed ef-
fect and furthermore, is restricted in frequency by the presence of
the right-half-plane zeros in the frequency response (see for exam-
ple Skogestad & Postlethwaite, 2005). Given that none of the con-
trollers proved successful at drag reduction, it is difficult to deter-
mine whether the fluctuation suppression has any beneficial effect,
or if it is simply offset by the impact of amplification at other fre-
quencies.

CONCLUDING REMARKS
We have presented a stochastic modelling approach suitable for

two of the coherent structures observed in three-dimensional bluff
body wakes: the RSB mode and the vortex shedding. This approach
takes the equation describing the underlying bifurcation observed
at low Re, and adds a stochastic term to model phenomenologically
the effect of turbulent fluctuations on the large-scale coherent struc-
tures.

Given the modelling and our understanding of the forced re-
sponse of the flow using dynamic flaps, we have presented two
feedback-control design approaches. For the first of these, the
stochastic model for the bistability of the flow may be linearised
directly, motivating a controller that has a suitable DC gain. Such
control aims to symmetrise the wake, changing the quasi-static be-
haviour. Provided that the interaction with the higher frequency
dynamics is also taken into account, such control may give drag re-
ductions of up to 2% and in an energetically efficient manner. This
is in agreement with results from other authors who have demon-

9D-2



10-3 10-2 10-1 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4
10-6

Figure 8. PSD of the vertical pressure gradient mv for a particular
controller. Suppression is achieved around StH ≈ 0.2, however the
drag is not reduced.

strated feedback control of bistability with similar levels of drag re-
duction (Li et al., 2016). There is scope for improvement on these
feedback controllers if strategies can be achieved that minimise the
amplification of other fluctuations in the wake, as these additional
fluctuations are generally detrimental to the drag reduction.

The second feedback-control approach is one that targets the
measured fluctuations in the wake rather than the static behaviour.
This control approach may take advantage of the linear frequency
response implied by the nonlinear stochastic models, in order to
design controllers based upon the sensitivity function. We have
demonstrated that measured fluctuations of the vertical pressure
gradient may be suppressed over the frequency range of the vor-
tex shedding, although no controllers were found that could give a
resultant drag reduction. The success may again be limited by the
amplification of measured fluctuations over other frequency ranges,
and to some extent is the result of fundamental limitations in the
application of linear control. It would be interesting to see if nonlin-
ear approaches could get around these issues and provide improved
drag reduction in the future.
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