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ABSTRACT
Fully developed turbulence is sustained in a precessing sphere

when the Reynolds number is sufficiently high and the precession
rate (the Poincaré number) is about 0.1. We experimentally inves-
tigate the sustaining mechanism of this developed turbulence. Our
strategy of the investigation is using a dilute surfactant solution,
which is a non-Newtonian fluid with viscoelasticity, and comparing
turbulence of the surfactant solution with water turbulence under the
common flow conditions. Flow visualizations show that small-scale
turbulent eddies are strongly suppressed by the viscoelasticity. This
is the case for all the examined Reynolds numbers; whereas particle
image velocimetry (PIV) shows that large-scale vortices are sup-
pressed only when the Reynolds number is high enough so that their
time-scale may be comparable with the characteristic time-scale of
the viscoelasticity. The combination of these experimental results
and previous studies on the mechanism of turbulence suppression
shows that small-scale turbulent eddies in the precessing sphere are
sustained through an energy cascading process rather than the sim-
ple advection from a high-shear-rate region near the wall.

BACKGROUND & PURPOSE
The word “precession” denotes the rotation of the spin axis

of a rotating object about another axis (Fig. 1). Half a century ago,
Malkus (1968) experimentally showed that a slowly precessing con-
tainer can sustain turbulence of a confined fluid. Many geophysi-
cists have been interested in this fact because the Earth’s precession
may lead to the dynamo due to turbulent motion of molten iron in
the outer core of the Earth (Le Bars et al., 2015). We are interested
in this fact from another viewpoint. Since a precessing container
is a useful table-top turbulence generator, it is likely to have many
engineering applications. For example, we are constructing a mixer
without stirring blades using a precessing container.

In the present study, we investigate turbulence in a precessing
sphere where the axes of the spin and precession are at a right an-
gle. Note that, once the angle between the two axes is fixed, flows
in a precessing sphere are controlled only by two dimensionless pa-
rameters: the Reynolds number and the Poincaré number defined
by

Re =
a2Ωs

ν
, (1)

and,

Po =
Ωp

Ωs
. (2)

Here, a is the radius of the sphere, ν is the kinematic viscosity of a
confined fluid, Ωs and Ωp are the magnitudes of the angular veloc-
ities of the spin and precession, respectively.

In our previous experimental and numerical studies on flows
in a precessing sphere (Goto et al., 2014a, 2014b), we have shown
the following. (i) Mean flow structures are predominantly deter-
mined by the Poincaré number, and they are almost independent of
the Reynolds number. (ii) For a fixed Reynolds number, the most
developed turbulence is sustained when Po ≈ 0.1. (iii) Our direct
numerical simulations (DNS) show that there exists a pair of large-
scale vortex tubes in the turbulence for Po = 0.1 and Re = O(104)
(Fig. 2).

Thus we have successfully revealed the parameter dependence
of the statistics and large-scale flow structures of the turbulence in a
precessing sphere. However, there remains an open question: how
is the turbulence sustained in the smooth cavity? The purpose of the
present paper is to answer this question.
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Figure 1. Precessing sphere.
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Figure 2. Mean flow structure of the turbulence for Po = 0.1 and
Re=O(104). Schematic drawn on the basis of DNS of a Newtonian
fluid. A pair of large-scale vortex tubes exists.
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STRATEGY
Our strategy is the following: by investigating the statistics of

turbulence of non-Newtonian fluids confined in a precessing sphere,
we aim at understanding the sustaining mechanism of turbulence of
a Newtonian fluid in it.

A small amount of surfactant or polymer additives can drasti-
cally change turbulence of water due to the viscoelasticity of the so-
lutions. This interesting phenomenon is called Tom’s effect for the
case with polymer additives, in particular. The turbulence suppres-
sion has been extensively investigated because it provides an attrac-
tive technique of turbulence control (Virk, 1975; Berman, 1978; Za-
kin et al., 1988; White and Mungal, 2008). The physical mechanism
of this phenomenon has also been investigated by many authors
(e.g. Lumley, 1969, 1973; Tabor and de Gennes 1986; see also a
recent review by White and Mungal, 2008). A key to the mecha-
nism is the matching of the time-scales of turbulent eddies and the
viscoelasticity of the solutions. Previous studies claim that once
this matching occurs, eddies lose their kinetic energy because of
the non-Newtonian viscosity or elasticity of the solutions. We em-
phasize that detailed investigation of the turbulence suppression can
provide us with important information on the sustaining mechanism
of turbulence because this phenomenon implies the inhibition of the
mechanism due to the viscoelasticity.

As will be shown, a kind of surfactant additive indeed reduces
the turbulence intensity in a precessing sphere. Note that we need to
understand the physics of the sustainment of turbulence of a New-
tonian fluid before we understand the mechanism of the modifica-
tion of the examined turbulence. Systematic investigation of turbu-
lence modification due to the additives, combined with the previous
knowledge (i.e. the time-scale matching), therefore provides useful
information to answer the question raised in the last paragraph of
the previous section.

METHOD
We experimentally investigate the modification of turbulence

in a precessing sphere by using the apparatus schematically shown
in Fig. 3. We use an acrylic container with a spherical cavity whose
radius is 90 mm. We drive the spin of the container on a rotating
turntable to realize its precession. We visualize the flow using a
laser sheet on the equatorial plane of the sphere. We conduct visu-
alizations and PIV using aluminum flakes and nylon powders, re-
spectively. A camera fixed on the turntable records the visualized
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Figure 3. Experimental apparatus. The laser sheet always runs
through the equatorial plane, and the flow state is recorded by a
camera fixed on the turntable through the bottom “observation win-
dow” of the container. Its outer shape is cylindrical, whereas the
cavity is a sphere with radius 90 mm.

flows.
We use a surfactant additive, cetyltrimethyl ammonium chlo-

ride (CTAC, 320.00 g/mol), with counterions, sodium salicylate
(NaSal, 160.10 g/mol). The concentration of both of CTAC and
NaSal is 50 wppm, which implies the molar ratio is 1:2. This sur-
factant solution exhibits viscoelasticity because thread-like micellar
structures are formed in it (Wei et al., 2010). Since the solution is
very dilute, we assume its zero-shear viscosity is the same as that
of water, and we estimate the Reynolds number of the flows of the
CTAC solution using the value of the kinetic viscosity of water at
the same temperature.

During the experiments, we surrounded the apparatus with
thermal insulators and circulated temperature-controlled air around
the apparatus. This allows us to conduct experiments, which last
over 10 hours, under the condition with a constant fluid temperature
(20±0.1 ◦C).

RESULTS

Small-scale eddies
Flake visualizations of turbulence of water and the CTAC so-

lution are shown in Fig. 4 for Re = 4.01× 104 and Po = 0.1. Tur-
bulence of the CTAC solution is much more quiescent than that of
water, and small-scale vortices are drastically suppressed in the tur-
bulence of the CTAC solution. For this Poincaré number (Po= 0.1),
we observe the similar behavior for different Reynolds numbers in
the range that 1.01×104 ≤ Re ≤ 8.02×104. (Figures are omitted.)

To quantify the results of flow visualization, we investigate vor-
ticity field on the equatorial plane in the sphere. We evaluate the
vorticity by central difference of velocity fields obtained by using
PIV. Figure 5 shows the temporal average of squared vorticity on the
equatorial plane, which is normalized by the magnitude of spin an-
gular velocity, of turbulence of (a–d) water and (e–h) the CTAC so-
lution. The examined Reynolds numbers are (a, e) Re = 1.01×104,
(b, f) 2.03× 104, (c, g) 4.01× 104, and (d, h) 8.02× 104, whereas
the Poincaré number is fixed at Po = 0.1. Note that the squared
vorticity reflects the intensity of small-scale vortices. It is clear
in Fig. 5 that small-scale vortices are drastically suppressed in the
bulk of turbulence of the CTAC solution and the region of the sup-
pression gradually expands as the Reynolds number increases. For
the highest Reynolds number, Re = 8.02× 104 [fig. 5(d, h)], the
strong suppression occurs in the whole region except for top-right
and bottom-left regions.

Large-scale eddies
Figure 6 shows the temporally-averaged velocity fields, ob-

tained by using PIV, of turbulence of (a-d) water and (e-f) the CTAC
solution. The examined parameters are the same as those in Fig. 5.
In all the figures, the large-scale vortical structures are observed in

(a) (b)

Figure 4. Flake visualization of turbulence of (a) water and (b)
the CTAC solution (50 wppm). The parameters are common: Re =
4.01×104 and Po = 0.1.
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Figure 5. Temporal average of the squared vorticity on the equatorial plane of turbulence for Po = 0.1. (a-d) Water and (e-h) the CTAC
solution (50 wppm). (a, e) Re = 1.01×104, (b, f) 2.03×104, (c, g) 4.01×104, and (d, h) 8.02×104. Vorticity is normalized by the magnitude
of the spin angular velocity, Ωs.
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Figure 6. Temporally-averaged velocity field on the equatorial plane of turbulence for Po = 0.1. (a-d) Water and (e-h) the CTAC solution (50
wppm). (a, e) Re = 1.01×104, (b, f) 2.03×104, (c, g) 4.01×104, and (d, h) 8.02×104. The thick vertical lines indicate the maximum speed
of the wall, aΩs.

the top-right and bottom-left regions. This implies that the pair of
largest-scale vortex tubes (Fig. 2) survives even in the turbulence
of the CTAC solution. On the other hand, in a central region of
the sphere, large-scale shearing flow is suppressed in turbulence of
the CTAC solution when the Reynolds number is relatively high,
Re = 4.01×104 [Fig. 6(c, g)] and 8.02×104 [Fig. 6(d, h)]. It is im-
portant that the region where the suppression occurs expands as the

Reynolds number increases. We emphasize that for Re= 4.01×104

and 8.02× 104, the largest-scale vortex tubes in the top-right and
bottom-left regions are also modified in their peripheries. This
means that even the largest eddies in turbulence are affected by the
viscoelasticity of the solution for relatively high Reynolds numbers
because their time-scale matches with the characteristic time-scale
of the viscoelasticity.
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Figure 7. Instantaneous profile of shear rate in turbulence of a
Newtonian fluid for Po = 0.1. DNS results for our experimental
set-up (a = 90 mm and ν = 10−6 m2/s). (a) Re = 1× 104 and (b)
2×104.

We have also verified by using the PIV data that turbulence in-
tensity of the CTAC solution is suppressed in a central region of the
sphere. The suppression of turbulence intensity shows the similar
Reynolds-number dependence to that of the mean flow. (Figures are
omitted.)

Furthermore, we have conducted the image analysis of the flow
visualizations. More concretely, we calculate the temporal correla-
tion function of the brightness at each point in visualized images
to show that the temporal correlation for turbulence of the CTAC
solution has much larger values than those of water. This result is
consistent with the observed suppression of small-scale vortices in
turbulence of the CTAC solution. (Figures are omitted, and to be
presented in the conference together with other results, e.g. results
for polymer solutions which have rheological properties different
from the CTAC solution.)

DISCUSSION
There are at least two possibilities of the sustaining mechanism

of small-scale vortices in the turbulence of a Newtonian fluid. In this
section, we discuss these mechanisms and which one can explain
our experimental results.

One possibility is that small-scale vortices are generated in a
high-shear-rate region near the wall and advected by the large-scale
vortex tubes (Fig. 2). Fluid motions observed in the flow visualiza-
tions seem to support this view, but the results of detailed measure-
ments of turbulence of the CTAC solution deny this idea because
it conflicts with the fact that the suppression of small-scale vor-
tices occurs even when the large-scale vortex tubes exist (Fig. 6).
Namely, once the large vortices exists, the advection of small-scale
eddies must occur. Our results of flow visualization (Fig. 4) and PIV
measurement (Fig. 5) show that there is no small-scale eddies in the
bulk of the sphere, which implies that this mechanism is irrelevant.

The other possibility is that an energy cascading process start-
ing from the largest-scale eddies (Fig. 2) generates small-scale vor-
tices. This idea is consistent with the experimental observations.
The characteristic time-scale of the viscoelasticity of a dilute CTAC
solution is O(0.1) s (Yu et al., 2004). By using DNS of turbu-
lence of a Newtonian fluid, we calculate the shear rate, γ̇ . Figure
7 shows shear rate obtained by DNS of turbulence of a Newtonian
fluid, which is defined by

γ̇ =
√

si jsi j. (3)

Here, si j is the strain rate tensor. We can confirm in Fig. 7 that the
characteristic time of the CTAC solution is within the range of time-

scales of the turbulent eddies under our experimental conditions.
This is the reason why the kinetic energy of the vortices at a length
scale where the time-scale matching occurs is transformed into the
elastic energy or dissipated by non-Newtonian viscosity. Then, be-
cause the energy cascade is inhibited below this length scale, the
smaller vortices do not exist.

This picture also explains the modification of mean velocity
fields and its Reynolds–number dependence. In our experiments,
the radius of the sphere (90 mm) and the kinematic viscosity of the
confined fluids are fixed. Therefore, the increase of Re (= a2Ωs/ν)
corresponds to the increase of Ωs. Since the time-scale of the flow
is shorter for larger Ωs, the time-matching scale is larger for higher
Reynolds numbers. Larger vortices are therefore affected by the
viscoelasticity, and this explains the Reynolds-number dependence
observed in Fig. 6.

CONCLUSION
Our careful experiments, using non-Newtonian fluids, show

that small-scale vortices in turbulence of a Newtonian fluid con-
fined in a precessing sphere are created through an energy cascad-
ing process in the bulk region of the sphere and they are not created
in the near-wall region. Although we have concentrated, in this
paper, on the turbulence in a precessing sphere, our method using
non-Newtonian fluids may be useful also for the investigation of
the sustaining mechanism of other wall-bounded turbulent flows of
Newtonian fluids.
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Le Bars, M., Cébron, D., & Le Gal, P., 2015, “Flows Driven

by Libration, Precession, and Tides,” Annual Review of Fluid Me-
chanics 47, 163–193.

Goto, S., Matsunaga, A., Fujiwara, M., Nishioka, M., Kida, S.,
Yamato, M., & Tsuda, S., 2014a, “Turbulence driven by precession
in spherical and slightly elongated spheroidal cavities,” Physics of
Fluids 26, 055107.

Goto, S., Shimizu, M., & Kawahara, G., 2014b, “Turbulent
mixing in a precessing sphere,” Physics of Fluids 26, 115106.

Virk, P. S., 1975, “Drag reduction fundamentals” AlChE Jour-
nal 21, 625–656.

Berman, N. S., 1978, “Drag reduction by polymers,” Annual
Review of Fluid Mechanics 10, 47–64.

Zakin, J. L., Bin, L., & Bewersdorff, H.-W., 1988, “Surfactant
Drag Reduction,” Reviews in Chemical Engineering 14, 253–320.

White, C. M. & Mungal, M. G., 2008, “Mechanics and pre-
diction of turbulent drag reduction with polymer additives,” Annual
Review of Fluid Mechanics 40, 235–236.

Lumley, J. L., 1969, “Drag Reduction by Additives,” Annual
Review of Fluid Mechanics 1, 367–384.

Lumley, J. L., 1973, “Drag reduction in turbulent flow by poly-
mer additives,” Journal of Polymer Science: Macromolecular Re-
views 7, 263–290.

Tabor, M., & P. G. de Gennes, 1986, “A cascade theory of drag
reduction,” Europhysics Letters 2, 519–522.

Wei, J.-J., Kawagushi, Y., Yu, B., Li, F.-C., and Zhang, C.-W.,
2010, “Microstructures and rheology of micellar surfactant solution
by Brownian dynamics simulation,” Nonlinear Dynamics 61, 503-
515.

Yu, B., Li, F.-C., & Kawaguchi, Y., 2004, “Numerical and
experimental investigation of turbulent characteristics in a drag-
reducing flow with surfactant additives,” International Journal of
Heat and Fluid Flow 25, 961–974.

7C-3




