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ABSTRACT
We have theoretically explored a velocity field optimiz-

ing heat transfer in plane Couette flow. The velocity field is
supposed to be incompressible, time-independent and peri-
odic in the wall-parallel directions, and temperature is deter-
mined in terms of the velocity as a solution to an advection-
diffusion equation. The Prandtl number is set to unity, and
the consistent boundary conditions are imposed on the ve-
locity and temperature fields. The excess of a wall heat flux
(or equivalently total scalar dissipation) over total energy
dissipation is taken as an objective functional. By using a
variational method, the Euler–Lagrange equations are de-
rived, and numerically solved to find the optimal states in
the sense of maximization of the functional.

At small Reynolds number Re ∼ 101, the optimal state
exhibits a two-dimensional velocity field which consists of
streamwise-independent large-scale circulation rolls. They
play a role in heat transfer enhancement with respect to
the conductive state as in thermal convection. At higher
Reynolds number Re ≳ 102, however, a three-dimensional
optimal state arises from symmetry breaking of the two-
dimensional state. The three-dimensional velocity field
consists of the large-scale rolls and smaller-scale hierar-
chical quasi-streamwise tube-like vortices near the walls.
The streamwise vortex tubes are tilted in the spanwise
direction so that they may produce the vorticity antipar-
allel to the mean-shear vorticity. The significant three-
dimensionality leads to optimal heat transfer enhancement,
and much higher wall heat flux is achieved with less energy
dissipation than those of a turbulent state.

1 INTRODUCTION
Turbulence has an ability of significantly high heat

transfer in comparison with laminar flow, but it results in
an increase in friction loss as a consequence of simultane-
ous promotion of momentum transfer. This is well known
as the similarity between heat and momentum transfer in
engineering (Reynolds, 1874; Chilton & Colburn, 1934),
and it suggests difficulty in simultaneous achievement of
heat transfer enhancement and skin friction reduction. Es-
pecially, for fluids with the Prandtl number, the ratio be-
tween thermal and momentum diffusivity, is close to unity
(e.g. about 0.7 for air), the heat and momentum transfer
shows strong similarity (Dipprey & Sabersky, 1963). If in-
novative flow control techniques to break the similarity and
to maximize the dissimilarity are developed, it will lead to

dramatic improvement of the performance of heat exchang-
ers. Recently, by applying an active feedback control to
heat transfer in wall-bounded turbulent flow with blowing
and suction on the wall, Hasegawa & Kasagi (2011) and
Yamamoto et al. (2013) have numerically achieved the dis-
similarity enhancement even when the Prandtl number is
equal to unity. In the near future, the accomplishment of
flow control for dissimilar heat transfer enhancement might
be expected.

The aim of this study is to find an optimal velocity field
which serves as a target of such flow controls. For ther-
mal convection, a lot of studies have been made on velocity
field leading to maximal transport (in other words, maximal
mixing) for over 60 years (Malkus, 1954; Howard, 1963).
Recently, Hassanzadeh et al. (2014) have reported optimal
transport under the two types of constraints (fixed kine-
matic energy or fixed enstrophy) in two-dimensional ther-
mal convection. On the other hand, Sondak et al. (2015)
have obtained solutions to the steady Navier–Stokes equa-
tion based on Oberbeck–Boussinesq approximation, which
achieve maximal heat transfer in the two-dimensional do-
main. However, three-dimensional optimal states or opti-
mal heat transfer enhancement in shear flows have not been
discussed as yet.

We focus on heat transfer in plane Couette flow, and
define an objective functional as the excess of the to-
tal scalar dissipation (or equivalently, a total wall heat
flux) over the total energy dissipation. Using a variational
method, we derive the Euler–Lagrange equations which de-
termine an optimal state. The present paper reports char-
acteristics of the optimal state obtained as a solution to the
Euler–Lagrange equations and a significant effect on heat
transfer enhancement of three-dimensional tube-like vortex
structures observed in the optimal velocity field.

2 FORMULATION
Figure 1 shows the configuration of the velocity and

temperature fields. The flow is driven by the parallel plates
moving in the opposite directions at a constant speed. The
upper (or lower) wall surface is held at higher (or lower)
constant temperature. The coordinates, x,y and z are used
for the representation of the streamwise, the wall-normal
and the spanwise directions, respectively, and their origin is
on the midplane of the channel. The corresponding compo-
nents of the velocity u(x,y,z) are given by u,v and w in the
streamwise, the wall-normal and the spanwise directions,
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respectively.
Let us consider heat transfer in an incompressible time-

independent velocity field fulfilling the continuity equation

∇ ·u = 0. (1)

We suppose that the temperature field T (x,y,z) is deter-
mined as a solution to an advection-diffusion equation

u ·∇T = κ∇2T, (2)

where κ denotes a thermal diffusivity. The velocity and
temperature fields are supposed to be periodic in the stream-
wise (x-) and the spanwise (z-) directions. The boundary
conditions

u(x,±h,z) =±Uex, T (x,±h,z) =±T0 (3)

are imposed on the walls, where ex is the unit vector in the
x-direction.

We decompose the temperature into a conduction part
and a fluctuation about it as

T = T0
y
h
+θ . (4)

Taking a volume average of the product of equation (2) with
θ and taking into account the boundary condition (3), we
have the expression of the wall heat flux as

−κ
dT
dy

(+h) =−κ
dT
dy

(−h) =−κh
T0

⟨
|∇θ |2

⟩
−κ

T0

h
, (5)

where (·) and ⟨·⟩ denote the average over wall-parallel
planes and the volume average, respectively. The first term
in the right hand side of equation (5) is referred to as “scalar
dissipation”.

On the other hand, the steady motion of a viscous fluid
is described by the Navier–Stokes equation

u ·∇ u =− 1
ρ

∇p+ν∇2u+ f , (6)

where p is the pressure, ρ and ν are the mass density and the
kinematic viscosity of the fluid, respectively. f is external
body force per unit mass. The volume average of the inner
product of equation (6) with the velocity u and the boundary
condition (3) yield the expression of the wall momentum
flux as

ν
2

[
du
dy

(+h)+
du
dy

(−h)
]
=

νh
U

⟨
|∇ u|2

⟩
− h

U

⟨
u · f

⟩
, (7)

where the first and second terms in the right-hand side rep-
resent energy dissipation and energy input by the external
force, respectively.

Figure 1. Configuration of the velocity and temperature
fields.

As can be seen from equation (5) and (7), the wall heat
flux corresponds to the scalar dissipation, and the wall mo-
mentum flux (i.e. the skin friction) is related with the en-
ergy dissipation. To find an optimal state for the dissimilar-
ity between momentum and heat transfer, we introduce the
dimensionless objective functional J⋆ as

J⋆ =
⟨

λ
2RePr

|∇⋆θ⋆|2 −
1

2Re
|∇⋆ u⋆|

2

+p∗⋆ (∇⋆ ·u⋆)+λθ∗
⋆

(
u⋆ ·∇⋆θ⋆+ v⋆−

1
RePr

∇2
⋆θ⋆

)⟩
. (8)

Each dimensionless quantity is normalized as

x⋆ =
x
h
, J⋆ =

J
U3/h

,

θ⋆ =
θ
T0

, θ∗
⋆ =

θ∗

T0
, u⋆ =

u
U
, p∗⋆ =

p∗

ρU2 , (9)

where ⋆ represents a dimensionless quantity. λ is the di-
mensionless weight of the contribution from the heat trans-
fer against the momentum transfer. Re = Uh/ν and Pr =
ν/κ are the Reynolds number and the Prandtl number, re-
spectively. p∗⋆(x⋆,y⋆,z⋆) and θ∗

⋆ (x⋆,y⋆,z⋆) are Lagrange
multipliers subject to the constraints (1) and (2). We sup-
pose that θ∗

⋆ satisfies the boundary conditions on the walls,
θ∗
⋆ (x⋆,±1,z⋆) = 0. The first variation of the functional J⋆

and the Euler–Lagrange equations are respectively written
as

δJ⋆ =
⟨

δJ⋆
δu⋆

·δu⋆+
δJ⋆
δθ⋆

δθ⋆+
δJ⋆
δθ∗

⋆
δθ∗

⋆ +
δJ⋆
δ p∗⋆

δ p∗⋆

⟩
(10)

and

δJ⋆
δu⋆

≡−∇⋆p∗⋆+
1

Re
∇2
⋆u⋆+λθ∗

⋆ ∇⋆θ⋆+λθ∗
⋆ ey = 0 (11)

δJ⋆
δθ⋆

≡ u⋆ ·∇⋆θ∗
⋆ +

1
RePr

∇2
⋆θ∗

⋆ +
1

RePr
∇2
⋆θ⋆ = 0 (12)

δJ⋆
δθ∗

⋆
≡ u⋆ ·∇⋆θ⋆−

1
RePr

∇2
⋆θ⋆+ v⋆ = 0 (13)

δJ⋆
δ p∗⋆

≡ ∇⋆ ·u⋆ = 0, (14)

where ey is the unit vector in the y⋆-direction. By solving
the equations (11)-(14) using a spectral-Galerkin Newton-
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Figure 2. Total scalar dissipation and total energy dissipa-
tion as a function of Re in the optimal and turbulent state
for Pr = 1 and λ = 0.1.

GMRES method, we seek a velocity field which gives a
maximal point of J⋆.

3 RESULTS AND DISCUSSION
3.1 Characteristics of optimal states

Figure 2 shows the total scalar dissipation and the to-
tal energy dissipation in the optimal state obtained for the
Prandtl number Pr = 1 and the weight coefficient λ = 0.1.
The time-averaged dissipation of the plane turbulent Cou-
ette flow is also plotted for comparison purposes. ⟨·⟩t de-
notes averaging over the volume and time. The solid line
represents the value in the laminar flow, 1/Re, which pro-
vides the lower bound of the total scalar and energy dis-
sipation. At quite small Reynolds number Re < 35, the
laminar conductive field is an optimal state. At higher Re,
however, the optimal state exhibits two-dimensional veloc-
ity field as shown in figure 3(a). Figure 3 shows the flow
structures and temperature fields in the optimal states. The
red (or blue) isosurfaces represent the positive (or negative)
streamwise vorticity in the lower half of the channel, and the
contours show cross-stream velocity fields and temperature
fields in the plane x/h = 2π(= 0). The two-dimensional
optimal state shown in figure 3(a) consists of streamwise-
independent large-scale circulation rolls that play a role in
heat transfer from the upper wall to the lower wall. In turbu-
lent flow, the scalar and energy dissipation take almost the
same value due to the similarity between momentum and
heat transfer. For the optimal state at large Re, meanwhile,
the much higher scalar dissipation (i.e., much higher wall
heat flux) is achieved with the less energy dissipation than
those of the turbulent flow. As shown in figure 3(b) and
3(c) , the optimal states exhibit three-dimensional velocity
fields. In the velocity field, there appear smaller-scale quasi-
streamwise tube-like vortices near the walls in addition to
the large-scale circulation rolls with the width of half the
spanwise period Lz/h = π . The wall-normal component of
the velocity is dominant in the central region of the channel.
Small-scale vortices are observed only in the near-wall re-
gions. They produce high temperature gradient to enhance
local heat transfer, by pushing the hotter (or colder) fluid
onto the lower (or upper) wall. As Re increases, smaller and
stronger quasi-streamwise vortices appear near the walls.

(a)

(c)

(b)

Figure 3. Isosurfaces of the streamwise vorticity in the op-
timal state at (a) Re= 200, (b) Re= 1000 and (c) Re= 5000
for Pr = 1 and λ = 0.1. Only those in the lower half of the
channel (y < 0) are shown for visualization of the struc-
tures near the lower wall. Red objects represent an iso-
surface of the streamwise vorticity (a) ωx/(U/h) = +0.3,
(b) ωx/(U/h) = +0.5 and (c) ωx/(U/h) = +2.0. Blue ob-
jects represent an isosurface of (a) ωx/(U/h) = −0.3, (b)
ωx/(U/h) =−0.5 and (c) ωx/(U/h) =−2.0. The contours
and the vectors represent temperature field T and velocity
field (w,v) in the plane x/h = 2π(= 0).
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Figure 4. Scalar dissipation as a function of Re for Pr = 1
and λ = 0.1. Red filled circles denote the scalar dissipa-
tion in the optimal state and blue open circles stand for that
obtained from the optimization only within a streamwise-
independent two-dimensional velocity field.

Figure 5. Vortical structures and significant increases in
the local scalar dissipation for the optimal velocity field
against the two-dimensional optimal velocity field at Re =

249 for Pr = 1 and λ = 0.1. The colored objects repre-
sent isosurfaces, Q = +0.03U2/h2, of the second invariant
of velocity gradient tensor, on which the distribution of the
spanwise vorticity fluctuation ω ′

z = ωz −ωz is shown. The
white objects indicate isosurfaces of an increase in the local
scalar dissipation, DS −D2D

S =+0.001(UT 2
0 /h).

3.2 Effects of flow three-dimensionality on
local scalar dissipation

Figure 4 shows the scalar dissipation in the optimal
state at small Re. The blue open circles represent opti-
mal state obtained by the optimization in a streamwise-
independent two-dimensional velocity field. The two-
dimensional optimal solution emerges from supercritical
pitchfork bifurcation on the laminar solution at Re = 35. As
Re increases further, the secondary pitchfork bifurcation oc-
curs on the two-dimensional solution branch at Re = 247.5
to create a three-dimensional optimal solution which gives
higher scalar dissipation. Figure 5 visualizes isosurfaces of
a positive value of the second invariant of the velocity gra-

(a)

(c)

(b)

Figure 6. Illustration of scalar fields around vortex tubes
in shear flow. (a,b) Configuration of the vortex tube in the
shear flow. In (b), the vortex tube is inclined from the X-
axis on the plane Y = 0. (c) Isocontours of the scalar in the
(Z′,Y ′)-plane normal to the central axis of the vortex tube.

dient tensor

Q =− ∂ui

∂x j

∂u j

∂xi
(15)

in the optimal state at Re = 249. The isosurfaces are col-
ored by the spanwise vorticity fluctuation ω ′

z = ωz −ωz on
the Q isosurface. Most parts of the extracted tube-like vor-
tex structures indicate ω ′

z > 0, and this result implies that the
vortex tubes are tilted in the spanwise direction so that they
may produce the spanwise vorticity antiparallel to the vor-
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ticity of the shear flow produced by the moving walls. The
white isosurface shows the region with significant increase
of the local scalar dissipation from the two-dimensional so-
lution at the same value of Re. The local scalar dissipation
defined as

DS = κ
(

∂T
∂ x j

)2
. (16)

Note that the volume average of DS is consistent with the
total scalar dissipation. It can be seen that the regions of
DS − D2D

S > 0 distribute around the vortices, where the
superscript 2D means the two-dimensional solution. The
mechanism of the local heat transfer enhancement can be
explained by using the simple model shown in figure 6.
The illustrations show the scalar field around a vortex tube
in shear flow. The isocontours indicate the scalar field in
the plane normal to the central axis of the vortex tube. As
shown in these figures, the vortex tube spirally wraps the
isosurfaces of the scalar around itself through the convec-
tive transfer induced by swirling flow. When the direction
of the central axis of the vortex tube is consistent with that
of the X-axis (figure 6a), the shear flow has no effect on
the scalar field because it is tangent to the scalar isosurfaces
everywhere. Now we consider that the vortex tube is in-
clined from the X-axis on the plane Y = 0, so that it may
produce the vorticity antiparallel to that of the shear flow
(figure 6b). We refer to the tilted vortex as anticyclonic vor-
tex. As shown in figure 6(c), the vortex tighten the spacing
of the wrapped isocontours of the scalar around itself. It
turns out that the scalar dissipation (i.e., heat flux) is locally
intensified in the flanks of the anticyclonic vortex, which
have been observed in the optimal state (figure 5).

3.3 Hierarchical structure in optimal state
Figure 7 shows the spanwise energy spectra of the

wall-normal velocity as a function of the distance from the
wall y + h and the spanwise wavelength l at Re = 1000-
5000. In figure 7(a), y+ h and l are non-dimensionalized
by half the channel width h. The peaks at (l/h,y/h+ 1) =
(π,1) indicate the large-scale circulation rolls, and they are
observed at any Re. On the other hand, a lot of peaks are
observed along the ‘ridge’ represented by the dashed line
l = π(y+ h), that is the near-wall quasi-streamwise vortex
tubes in the optimal states possess hierarchical self similar-
ity. The length scale of the largest vortices scales with the
outer length h, and their height is y/h+ 1 ≈ 0.2 regardless
of Re. Here, we introduce the inner length δT which char-
acterises the near-wall temperature profile as

δT = T0

(
dT
dy

(+h)
)−1

= T0

(
dT
dy

(−h)
)−1

. (17)

In figure 7(b), y+ h and l are normalized by δT . It can be
seen that the spectral density distribution scales with the in-
ner length δT in vicinity to the wall. The self-similar vortex
structures exist in the range of δT ≲ y+h ≲ 0.2h at any Re.

Shown in figure 8 is the mean temperature profile in
the optimal state at Re = 1000− 5000. As Re increases,
the profile in the central region of the channel is more
flattened, while the gradient at the wall is steeper. Fig-
ures 9 and 10 respectively show the mean temperature and
the mean heat flux profiles as a function of the distance
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Figure 7. Spanwise energy spectra of the wall-normal ve-
locity as a function of the distance from the wall y+ h and
the spanwise wavelength l in the optimal state for Pr = 1
and λ = 0.1. The distance from the wall y + h and the
wavelength l are normalized by (a) half the channel width
h and (b) the inner length δT . The diagonal lines show
l = π(y+h).

to the wall, (y + h)/δT . At (y + h)/δT ≪ 1, the pro-
file corresponds to T/T0 + 1 = (y+ h)/δT , since the dif-
fusion dominants over the advection. In the intermediate
region 1 ≲ (y + h)/δT ≲ 10 where the hierarchical vor-
tex structures exist, the logarithmic-like profile can be ob-
served. The dashed line represents the logarithmic fit de-
termined in the range 1 < (y + h)/δT < 10, T/T0 + 1 =
0.086ln((y+h)/δT ) + 0.81. It is well known that a log-
arithmic mean velocity profile appears in near-wall turbu-
lence where self-similar hierarchical vortical structures are
commonly observed. As can be seen from the similarity
between momentum and heat transfer, heat transfer in the
turbulent flow also shows the logarithmic mean temperature
profile. On the other hand, in recent years, the logarithmic
temperature distribution has also been found in thermal con-
vection turbulence (Ahlers et al., 2012, 2014). To clarify
the effect of the hierarchical self-similar vortex structures
on optimal heat transfer at large Reynolds numbers and to
reveal that correspondence relation between such structures
and the logarithmic profile are left for future study.
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Figure 8. Mean temperature profiles in the optimal states
for Pr = 1 and λ = 0.1.
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Figure 9. Mean temperature profiles as a function of the
distance to the wall y+h normalized by the inner length δT

in the optimal states for Pr = 1 and λ = 0.1. The solid curve
indicates T/T0 +1 = (y+h)/δT , and the dashed line shows
the logarithmic fit T/TT0 +1 = 0.086ln [(y+h)/δT ]+0.81
determined in the range 1 < (y+h)/δT < 10.
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Figure 10. Convective and conductive heat fluxes as a
function of the distance to the wall y+h normalized by the
inner length δT in the optimal states for Pr = 1 and λ = 0.1.
The solid and dashed curves represent the convective heat
fluxes −vθ and the conductive heat fluxes dT/dy normal-
ized by the inner length, respectively.
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