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ABSTRACT
The interaction of a Mach 1.55 shockwave with a nominally in-

clined interface between N2 and CO2 is considered. Unlike the clas-
sical Richtmyer-Meshkov problem, the interface evolution is non-
linear from early time and large highly correlated vortical structures
are observed even after reshock. Simulations target the experiment
of McFarland et al. (2014). Simulations are performed using high-
order spectral-like numerics (Lele, 1992). Results from multiple
grid resolutions up to 4 billion grid points establish grid insensi-
tivity of important physical quantities. Comparisons to the experi-
ments show that the simulations adequately capture the physics of
the problem. Analysis of the simulation data based on variable den-
sity turbulence equations in the Favre averaged and filtered form is
presented. Statistics of unclosed terms in the averaged and filtered
variable density equations are presented with a focus on the energy
dynamics. It is observed that the inhomogeniety in the problem re-
sults in a non-monotonic return to isotropy of the Reynolds stresses
post reshock and that compressibility effects are strong long after
reshock due to large scale pressure-dilatation correlation. Binning
the kinetic energy into logarithmically spaced bins in wavenumber
space shows a k−2 scaling of the energy spectrum post reshock in-
stead of the standard k−5/3 power law.

INTRODUCTION
The Richtmyer-Meshkov (RM) instability is a hydrodynamic

instability caused due to the interaction of a shockwave with a ma-
terial interface. Akin to Rayleigh-Taylor instability where gravity
acts to produce vorticity at the material interface, in RM flows,
baroclinic vorticity generation deposits vorticity on the material in-
terface when there is a misalignment of the pressure and density
gradients rendering the interface unstable to a broad wavenumber
range of disturbances.

The RM instability is an important phenomenon in many en-
gineering and science applications involving material mixing. It is
important in supersonic combustion as an enhancer of mixing be-
tween fuel and oxidizer. It is important in astrophysical applica-
tions, especially in the physics of supernovae to explain the lack of
stratification in supernova remnants. It is also a major roadblock
in achieving sustained fusion in Inertial Confinement Fusion (ICF)
and can cause reduced yield and potentially inhibit startup.

PROBLEM SETUP
In this work, we simulate the RM instability arising from the

interaction of a shockwave with a material interface that has a mean
inclination with respect to the shockwave. Simulations presented
here target the experiment in McFarland et al. (2014). Figure 1
shows a schematic of the problem setup. A material interface be-
tween N2 and CO2 with a θ = 60◦ mean inclination is initialized
just downstream of a Mach 1.55 shockwave in N2. Small pertur-
bations on top of the mean inclination are added based on the ex-
perimentally measured profiles. A detailed description of the initial
interface description is given in McFarland et al. (2014). Figure 2
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Figure 1: A schematic of the problem setup. Domain extends
from 68.58cm to 256.46cm in x, 0cm to 11.43cm in y and
−1.429cm to 1.429cm in z.

Figure 2: Plot of the z averaged density field at t = 0ms,
3.5ms, 7.2ms and 12ms from top to bottom.

shows the density field at different times that visualizes the shock
and interface.

The shocktube in the experiment has a square cross section
with side 11.43cm. In the simulations (see Figure 1), we idealize
the spanwise (z) direction to be homogeneous (and periodic) by ne-
glecting the wall effects in that direction and simulate a quarter of
the cross section in the z direction. In the y direction, we use free-
slip wall boundary conditions that capture the inviscid blocking ef-
fect of the wall but not the viscous boundary layers. Their effect is
expected to be small over the time scales of inertially driven bulk
instability arising in this problem. At the left x boundary, we use a
sponge layer to absorb any waves that may reach this boundary and
at the right x boundary is a wall.

NUMERICAL METHOD
The full compressible multi-species Navier-Stokes equations

are solved in conservative form. Pressure and thermal equilibrium
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between the two species is assumed at every point in the domain
that gives a mixture rule. The equations solved here are the same as
in Tritschler et al. (2014).

Simulations are performed using the Miranda code developed
at Lawrence Livermore National Laboratory (LLNL). The equa-
tions are discretized using a 10th order compact finite difference
scheme (Lele, 1992) in space. Time integration is performed using
a 4th order 5 stage Runge-Kutta scheme (Kennedy et al., 2000). Nu-
merical regularization for shock and interface capturing is done us-
ing the LAD scheme (Cook, 2007; Kawai & Lele, 2008). The main
idea behind the LAD scheme is to add artificial viscous stresses,
conductive fluxes and diffusive fluxes that are localized to regions
of discontinuities in order to add the minimal required amount of
dissipation. The LAD scheme explicitly adds dissipation to capture
shocks, interfaces and sub-scale features and acts like a sub-grid
model. This allows for explicit computation of the energy dissi-
pation introduced by the LAD scheme and can be accounted for in
energy budgets unlike in other numerical methods where dissipation
is added implicitly through upwinding. The grid used is an isotropic
cartesian grid. The different grids used are listed in Table 1.

Table 1: Different grids used for the simulations. N is the
number of points in the transverse direction.

N Label Grid Final time

128 A 2048×128×32 12ms

256 B 4096×256×64 12ms

512 C 8192×512×128 12ms

1024 D 16384×1024×256 3.5ms

RESULTS
In the inclined interface RM instability, the interface is ren-

dered unstable when the shock first impinges on the interface due
to baroclinic torque. Due to the inhomogeneity in the transverse di-
rection, the net circulation is non-zero and large rollers are formed
as the interface evolves. The transmitted shock wave reflects from
the end wall and a second interaction of the interface with a shock
(or reshock) occurs at t ≈ 5.5ms. Post reshock, the net circulation is
opposite to the pre reshock value since the reflected shock is propa-
gating in the opposite direction as the initial shockwave. This causes
a large scale overturning of the interface. The second shock inter-
action also adds baroclinic vorticity at much smaller scales and the
mixing region becomes much more turbulent. Subsequent weaker
shocks and rarefactions interacting with the interface cause further
modifications of the turbulent structures in the mixing region.

Comparison with experiments
To validate the simulations, we compare the simulation results

to the results of McFarland et al. (2014). Figure 3 shows the evolu-
tion of the mixed width defined as δ = 4

∫
〈YCO2〉yz

(
1−〈YCO2〉yz

)
dx

where 〈〉yz indicates average in the y and z directions. We see that
the mixed width converges with increasing resolution and compari-
son with the experimental results is very good. Since the instability
is driven by baroclinic vorticity deposited by the shock, the total
circulation and the positive and negative contributions to it are good
quantities to compare with experiments for predominantly 2D flows
as indicated by Zabusky (1999). Figure 4 shows the evolution of the
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Figure 3: Comparison of the mixed width with experiments
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Figure 4: Comparison of the net circulation (solid), positive
(dashed) and negative (dash-dot) contribution to the net cir-
culation with experiments

net, positive and negative circulation. The net circulation converges
with increasing grid resolution and compares well with the exper-
iments. The positive and negative contributions to the circulation
compare well with the experiments before reshock when the flow is
predominantly 2D. After reshock, the positive and negative contri-
butions to the circulation are not fully grid converged since the flow
is highly 3D post reshock.

Turbulence Energy Budget
Using Favre averaging (Favre, 1969) and averaging in the ho-

mogeneous direction (z), a Turbulent Kinetic Energy (TKE) equa-
tion can be derived as (Chassaing et al., 2013)

∂ 〈ρ〉〈K̃〉
∂ t

+
∂ 〈ρ〉〈K̃〉〈ũ j〉

∂x j
=−

∂ 〈ρ〉〈K̃u j ′′〉
∂x j

−〈ρ〉〈ũi′′u j ′′〉
∂ 〈ũi〉
∂x j

− ∂ 〈p〉〈ui
′′〉

∂xi
− ∂ 〈p′ui

′′〉
∂xi

+ 〈p ∂ui
′′

∂xi
〉+

∂ 〈τi jui
′′〉

∂x j
−〈τi j

∂ui
′′

∂x j
〉

(1)

where 〈()〉 denotes simple Reynolds averaging and ()′ is the cor-
responding fluctuation, 〈(̃)〉 denotes Favre averaging and ()′′ is the
corresponding fluctuation. K = 1

2 ui
′′u j
′′ is the instantaneous value

of the TKE and it’s Favre averaged value is 〈K̃〉 = 1
2 〈ũi′′u j ′′〉 =

1
2 〈ρui

′′u j
′′〉/〈ρ〉.

In a spatially integrated sense, the terms that are important for
energetics are the shear production −〈ρ〉〈ũi′′u j ′′〉 ∂ 〈ũi〉

∂x j
, turbulent

dissipation 〈τi j
∂ui
′′

∂x j
〉 and the pressure-dilatation correlation 〈p ∂ui

′′

∂xi
〉.

Figure 5a shows the spatially integrated shear production and
turbulent dissipation as a function of time for different grid reso-
lutions. Before reshock, we see that the production and dissipa-
tion grow slowly with time. Both production and dissipation peak
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just after reshock around t = 5.5ms and decay with time. After
t ≈ 7.5ms, we see a slow growth of the production due to shear
caused by the large scale overturning of the interface. Figure 5a
also shows that apart from the lowest resolution case (grid A), the
integrated production and dissipation remain grid independent; the
LAD terms indeed act like sub-grid models. Figures 5b and 5c show
all the terms governing the integrated TKE evolution normalized by
the TKE growth rate. To close the budget, we need to include the
dissipation introduced by the dealiasing filter used in the simula-
tions. However, we see that on grid C, the effect of the filter is
smaller than all the other terms away from reshock and contributes
to about 10% of the TKE budget. On grid D, the contribution of
the filter falls to about 3%. Figures 5b and 5c also show that the
pressure-dilatation correlation is important in the energetics and is
comparable in magnitude to the turbulent dissipation.

Figure 6 shows the Reynolds stress anisotropy as a function
of time. After the first shock interaction the state of turbulence is
predominantly 1-component due to the anisotropy introduced by the
shock interaction. After reshock, we see a move towards isotropy
as the turbulence relaxes after compression by the shock. At larger
times corresponding to the circulation time scale, we see a move
away from isotropy due to the large scale shear. The inhomogeneity
in this problem creates a competition between the two processes and
consequently a non-monotonic return to isotropy.

Figure 7a shows the contours at t = 6.5ms and Figure 7b shows
the time evolution of the peak RMS turbulent Mach number of the
flow Mt =

√
〈u′iu′i〉/〈cs〉 where cs is the speed of sound. Mt is small

before reshock but spikes at reshock becoming > 0.3 and decays
rapidly. Post reshock, Mt asymptotes at ∼ 0.1 which is not high
enough for pressure-dilatation to play a significant role in the tur-
bulence energetics. This is contrary to the fact that the pressure-
dilatation correlation is significant even after the shock has traveled
sufficiently far away from the interface as evidenced by the TKE
budget. An inherent flaw with RANS type analysis for such a flow
with a high degree of interaction between shocks and turbulence
is that shocks that are not perfectly homogeneous in the averaging
direction would contribute significantly to fluctuations that can be
wrongly interpreted as turbulent features. Shocks can be expected to
have some corrugation in the averaging direction as a consequence
of interaction with the interface which does have strong variations
in the homogeneous direction.

Scale decomposition
To clearly distinguish between the effect of shocks interacting

with the turbulent mixing region and compressibility effects inher-
ently present in the mixing region, we decompose the equations into
large and small scales by an isotropic coarse-graining (or filtering)
procedure. We follow the theoretical framework of Aluie (2013)
to coarse-grain the equations using Favre filtering. As detailed in
Aluie (2013), Favre filtering and defining the kinetic energy appro-
priately ensures that dissipation is isolated to the small scales and
that energy injection is isolated to the large scales as is the case in
incompressible turbulence. The kinetic energy above scales l are
then governed by the following equation

∂

∂ t
ρ̄
|ũuu|2

2
+∇ · JJJ =−Π−Λ+ p̄∇ · ūuu−Ds (2)

where f̄ is a filtered form of f and f̃ = ρ f/ρ̄ is the Favre fil-
tered form of f . Π = −ρ̄

∂ ũi
∂x j

(
ũiu j− ũiũ j

)
is the production that

transfers energy from large to small scales (if positive), Λ =
1
ρ̄

∂ p̄
∂x j

(
ρu j− ρ̄iū j

)
is the baropycnal work due to large scale pres-

sure gradient acting on the small scale mass flux to transfer energy

from large to small scales (if positive), p̄∇ · ūuu is the pressure dilata-
tion work acting on the large scales and Ds =

∂ ũi
∂x j

τ̄i j is the dissipa-
tion acting on large scales.

We perform the coarse-graining using an isotropic Gaussian
filter with a filter width of 4∆ where ∆ is the grid spacing (Cook,
2007). To increase the filter width to 4n∆, the same filter is recur-
sively applied n2 times.

Figures 9 and 10 show Π and Λ at t = 7.2ms as a function of
the filter width. At the largest filter widths, almost all the turbu-
lence is sub-scale but as the filter width is reduced, a clear structure
is seen in the plots of Π. The baropycnal work Λ reduces mono-
tonically with decreasing filter width. As the filter width increases,
more of the turbulence is unresolved and becomes a sub-scale mass
flux that contributes to the baropycnal work. Note that Π and Λ are
the only terms in Equation 2 that transfer energy from the large to
the small scales and the sum of the two determines the energy flux
from large to small scales. Figure 11 shows the large scale pressure-
dilatation for different filter widths. This plot is revealing and shows
the energy transfer mechanisms active in the flow. The large scale
pressure dilatation is dominated by a rich and complex pattern of
shockwaves and rarefactions and there is almost no correlation with
the interfacial pattern visualized by the density in Figure 8. This
indicates that it isn’t the turbulence itself that is contributing to the
compressibility effects but rather the pattern of shocks and rarefac-
tions created by the inhomogeneity in the transverse direction dur-
ing reshock that is continually interacting with the turbulent mixing
region.

The sum
∫

Ω
ΠdΩ +

∫
Ω

ΛdΩ is the net energy transfer from
scales larger than the filter width to those that are smaller. As-
suming that energy is injected into the flow at time scales that
are much larger than the time scales at which energy is cascaded
to smaller scales (a quasi-steady state turbulence assumption), if∫

Ω
ΠdΩ+

∫
Ω

ΛdΩ is independent of the scale of coarse-graining,
then there is a conservative cascade of energy from large to small
scales analogous to the Kolmogorov theory for incompressible tur-
bulence. Figure 12 shows the energy tranfer terms integrated over
an interfacial region (same as the region shown in Figure 9 so that
effect of the strong shocks are excluded) on a logarithmic scale as a
function of the filter wavenumber k f = 2π/λ f non-dimensionalized
by the transverse domain length Lyz where λ f is the filter width. Be-
fore reshock at t = 3.5ms, production at large scales is negative in-
dicating that energy is transferred from the small scales to the large
scales. The baropycnal work however, is higher than the produc-
tion and is positive and hence the net energy flux to small scales
is positive. Just after reshock at t = 6.5ms, production is positive
across all scales and the baropycnal work is smaller but negative
causing the net energy transfer to the smaller scales to be positive.∫

Ω
ΠdΩ+

∫
Ω

ΛdΩ is also seen to be constant for the three highest
wavenumbers indicating that the energy flux in scale is indepen-
dent of the scale and an intertial range may be expected. Similar
trends are seen at t = 7.2ms with the main difference being that both
production and baropycnal work are positive and transfer energy to
small scales.

Figure 13 shows the same quantities as Figure 12 with the ex-
ception that the pressure dilatation term has the large scale sub-
tracted out p̄∇ · ūuu− p̄∇ · ūuu|k f Lyz=8π . The energy transfer terms are
plotted on a linear scale. This highlights the variation of the pres-
sure dilatation term with scale at the same order of magnitude as
the rest of the terms. For all three times shown in Figure 13, we see
that the pressure dilatation term does indeed have a scale depen-
dence. Although shocks are highly localized in space, their effect
on turbulence is broadband since in Fourier space, the spectrum of
a shock decays as k−1. This causes the broadband energy injection
through the pressure-dilatation term. It must also be noted here that
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(a) Integrated shear production (black) and
turbulent dissipation (green) plotted against
time. Dotted line is grid A, dashed-dotted line
is grid B, solid line is grid C and dashed line
is grid D.

(b) Integrated shear production (black), tur-
bulent dissipation (green), pressure-dilatation
correlation (magenta) and filter dissipation
(cyan) non-dimensionalized by the TKE
growth rate on grid C.

(c) Integrated shear production (black), tur-
bulent dissipation (green), pressure-dilatation
correlation (magenta) and filter dissipation
(cyan) non-dimensionalized by the TKE
growth rate on grid D.

Figure 5: Energetics and TKE budget based on the RANS equations.
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Figure 6: (a) Joint PDF of the Reynolds stress anisotropy at
t = 7.2ms. (b) Evolution of the centroid of the joint PDF
of Reynolds stress anisotropy (time represented by the color-
bar).

although the pressure dilatation varies with scale, the majority of
its contribution comes from the very large scales as can be seen in
Figure 12.

The integrated kinetic energy can be categorized into bins in
wavenumber space so that the kinetic energy between k f and kg >

k f may be defined as K f g = ρ̄
|uuu|2

2

∣∣∣
kg
− ρ̄

|uuu|2
2

∣∣∣
k f

to give an estimate

of the scaling of the kinetic energy with wavenumber. In the inertial
range, if the energy spectrum scales as E(k) ∝ kα , α 6= −1, then

K f g ≈
∫ kg

k f
E(k)dk ∝ kα+1

f g

[(
kg
k f

)(α+1)/2
−
(

kg
k f

)−(α+1)/2
]

where

k f g =
√

k f kg. For constant kg/k f (= 2 here), we would expect an
α + 1 power law in the binned kinetic energy. For a k−5/3 energy
spectrum, we would expect a k−2/3 scaling of the binned kinetic
energy.

Figure 14 shows the binned kinetic energy at different times.
Before reshock at 3.5ms, the flow is still transitional and not yet tur-
bulent and hence the kinetic energy decays rapidly with wavenum-
ber. At 6.5ms and 7.2ms when the flow is fully turbulent, we see
a scaling close to k−1 which indicates that the kinetic energy spec-
trum E(k) scales as k−2. At both t = 6.5ms and t = 7.2ms, we see a
flattening of the binned kinetic energy at larger wavenumbers. This
might indicate that at large scales, the time since reshock is insuf-
ficient to fully setup an energy cascade and that a larger range of
scales is required in order to conclusively infer the kinetic energy
scaling at higher wavenumbers.

(a) Plot of the RMS turbulent Mach number field Mt at t = 6.5ms.
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(b) Turbulent Mach number Mt based on the RMS Reynolds fluctuating
velocity plotted against time.

Figure 7: Turbulent Mach number Mt contours and peak as a
function of time.

Figure 8: ρ̄ for filter width of 4∆ at t = 7.2ms

CONCLUSION
In this work, the inclined interface Richtmyer-Meshkov insta-

bility was simulated targeting the experiment of McFarland et al.
(2014). The mixing width and circulation from the simulation com-
pare well with those from the experiment. The energetics in the
problem was investigated using a RANS type analysis and a scale
decomposition analysis. A non-monotonic return to isotropy was
seen post reshock due to the competing time scales of relaxation af-
ter compression of the turbulence by the shock and the circulation
time scale. TKE budgets were presented for the RANS analysis and
the effect of the dealiasing-filter was quantified and shown to be
small (∼ 10%). The RANS analysis showed that pressure-dilatation
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Figure 9: Π for increasingly larger filter widths at t = 7.2ms

Figure 10: Λ for increasingly larger filter widths at t = 7.2ms

correlation was important but that the turbulent Mach number was
relatively low (∼ 0.1 RMS). Scale decomposition showed that the
compressibility was due to a complex pattern of shocks and rarefac-
tions created due to the inhomogeneity in the transverse direction
and not due to compressible effects in the turbulent mixing region
itself. Energetics were investigated at different scales and showed
that the net flux of energy to smaller scales was scale invariant in the
inertial range. Energy injected into the flow due to shocks and rar-
efactions was seen to be broadband. Finally, the kinetic energy was
decomposed into bins in wavenumber space and a k−2 scaling of
the energy spectrum was inferred although a larger range of scales
could potentially reveal a different scaling at larger wavenumbers.
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Figure 12: Plots of Π (circles), Λ (squares), Π+Λ (stars), p̄∇ · ūuu (triangles pointing down) and Ds (triangles pointing up) at
different times. Red color indicates an energy sink in the large scale kinetic energy and blue color indicates and energy source.
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Figure 13: Plots of Π (circles), Λ (squares), Π+Λ (stars), p̄∇ · ūuu− p̄∇ · ūuu|k f Lyz=8π
(triangles pointing down) and Ds (triangles

pointing up) at different times. Red color indicates an energy sink in the large scale kinetic energy and blue color indicates and
energy source.
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Figure 14: Plots of the kinetic energy in scale intervals depicted by the horizontal bars at different times. Symbols are the data.
Dashed line indicates a −2/3 power law, dashed-dotted line indicates a −1 power law and dashed line indicates a −3/2 power
law.
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