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ABSTRACT
Direct numerical simulations of a pressure driven turbulent

flow are performed in a large rectangular channel. Extreme
and moderate drag regimes within turbulence that have earlier
been found to exist temporally in minimal channels at transitional
Reynolds numbers have been observed both spatially and tem-
porally in full-size turbulent flows. These intermittent regimes,
namely, “hyperactive”, “active” and “hibernating” turbulence, dis-
play very different structural and statistical features. Using condi-
tional sampling, we identify these intermittent intervals and present
the differences between them in terms of simple quantities like
mean velocity, all shear stress and flow structures. By condition-
ally sampling of the low wall shear stress events in particular, we
show that the local mean velocity in large domains occasionally ap-
proaches that of one family of the exact coherent states that are char-
acteristic of very low drag in Newtonian minimal channel flows.

INTRODUCTION
A way of understanding the chaotic dynamics of turbulent

flows is to look at the exact coherent states (ECS) of the Navier-
Stokes equations. Low-drag events in Newtonian flows resemble
a recently-discovered family of ECS in minimal channel by Park
& Graham (2015). Similar transient behaviour at low Reynolds
numbers in minimal channels has also been observed in viscoelastic
flows by Xi & Graham (2012). The objective of this study is to es-
tablish whether temporal intermittency in minimal-channel Newto-
nian flows translates to temporal and spatial intermittencies in large-
domain Newtonian flows.

An important feature of spatially extended flows in the tran-
sitional Reynolds number regime is “laminar-turbulent intermit-
tency”. Manneville (2015) provides an excellent overview of this
phenomenon; the basic observation is that the transitional Reynolds
number regime, at a given point in the domain the flow alternates
randomly between states with weak and strong fluctuations. In pipe
flows, laminar-turbulent intermittency is observed by Wygnanski
& Champagne (1973); Wygnanski et al. (1975) as localised turbu-
lent patches, known as puffs, surrounded by laminar flow upstream
and downstream of it. In channel flow, elongated near-wall streaks
forming stripe patterns have been observed by many researchers
such as Duguet & Schlatter (2013); Lemoult et al. (2012, 2013,
2014); Hashimoto et al. (2009); Rolland (2015). These patterns
are oriented obliquely relative to the main flow direction. Flow is
highly turbulent near the centre region of the stripes, and around
the stripes are regions of streamwise streaks that are relatively less
turbulent. As the Reynolds number is increased, the fluctuation in-
tensity in the less turbulent regions increases along both streamwise
and spanwise directions, the stripiness in the flow structures start to
vanish and eventually, the flow becomes uniformly turbulent, i.e.,
any apparent large-scale structures are absent.

FORMULATION

We consider pressure driven flow of an incompressible New-
tonian fluid in a rectangular, wall-bounded domain (channel) main-
tained at constant mass flux. The x, y and z axes correspond to
the streamwise, wall-normal and spanwise directions, respectively.
No-slip boundary conditions are applied at the top and bottom
walls and periodic boundary conditions are adopted in the stream-
wise and spanwise directions. The study focusses on results for
three Reynolds numbers, Re = 1490,1820 and 2200 (correspond-
ing to friction Reynolds numbers, Reτ = 70,85 and 100, respec-
tively). The streamwise and spanwise periods in outer units are
42.86 l × 11.43 l at Reτ = 70, 35.36 l × 9.43 l at Reτ = 85 and
30.00 l×8.00 l at Reτ = 100. The half-channel height, l, is the char-
acteristic length scale for nondimensionalisation of all the lengths
in the geometry. The dimensions in outer units correspond to a
domain size of L+

x ≈ 3000,L+
z ≈ 800 in wall units at all values

of Reτ : 70, 85 and 100. Here, the superscript ‘+’ indicates nor-
malisation with the viscous length scale, δν = ν/uτ , where ν is
the kinematic viscosity of the fluid and uτ is the friction veloc-
ity. We use

(
Nx,Ny,Nz

)
= (196,73,164) grid points for Reτ = 70,

(160,73,120) grid points for Reτ = 85 and (160,85,120) grid
points for Reτ = 100 in the streamwise, wall-normal and spanwise
directions, respectively. The numerical grid spacings in streamwise
and spanwise directions are δ+

x ≈ 15 and δ+
z ≈ 5, respectively, for

all the cases. Nonuniform Chebyshev spacing in the wall-normal
direction gives δ

+
y,min ≈ 0.07 at the wall and δ+

y,max ≈ 3 at the cen-
tre of the channel. A constant time step, δ t = 0.02, which satisfies
the CFL stability condition, is used in all simulations. The spatial
and temporal resolutions are at the same level as those reported in
previous studies (e.g. Alfonsi (2011)). A convergence check was
also done — spatial resolution was increased and all the quantities
reported in the paper were recalculated, yielding negligible changes
from the results reported here.

Figure 1 shows some instantaneous snapshots of wall shear
stress fluctuations from our channel flow DNS in extended domain
at friction Reynolds numbers 70, 85 and 100. The flow structures
are significantly three-dimensional at all the Reynolds numbers and
fluctuations can be seen throughout the domain: the intermittency
observed is purely within turbulence. It is interesting to note that at
Reτ = 70, which is the lowest Reτ we consider, a large-scale stuc-
ture of weak and strong turbulent fluctuations appears in the form of
stripes that are oriented obliquely relative to the mean flow. Similar
stripy patterns have also been observed experimentally in channel
flow by Hashimoto et al. (2009) as well as in Couette flow com-
putations (e.g. Barkley & Tuckerman (2005)). As the Reynolds
number increases, the stripiness start to disappear (see Figure 1 (b)
and (c)) and eventually the turbulence becomes uniform. A natural
question is how closely minimal channel observations are related
to the phenomenon of laminar-turbulent intermittency in the transi-
tional Reynolds number regime for spatially extended flows.

6D-3



(a) Reτ = 70

(b) Reτ = 85

(c) Reτ = 100

Figure 1. Spatial patterns of instantaneous wall shear stress fluctu-
ations in the streamwise (x)-spanwise (z) plane of a turbulent chan-
nel flow. Flow is from left to right. Red is high, blue is low.

RESULTS AND DISCUSSION
To detect and sample low and high drag events happening lo-

cally with time, we measure the instantaneous wall shear stress at a
point on a wall. At the same time, we keep track of all the three ve-
locity components at various discrete distances from the wall. Our
criteria for an event is that the wall shear stress (τw) at the point
must surpass a threshold value and it must stay on the same side of
the threshold for a specified minimum time duration. Specifically,
for an event to be called hibernation, the wall shear stress must fall
below the specified threshold and must last for a duration t∗ > 3,
and for an event to be hyperactive, τw must become higher than
the corresponding threshold value and, as before, must stay high
for t∗ > 3. Here, t∗ = tuτ/l, i.e., time measured in units of eddy
turnover times. Choosing a different value for t∗, e.g., 2.5 or 3.5
gives essentially identical results. Figure 2(a) shows many low wall
shear stress events measured at Reτ = 85 that satisfy the criteria
for hibernation. The beginning of each event shifted to t∗ = 0, i.e.,
t∗ = 0 is the time when the wall shear stress falls below a threshold
of 90% of the mean wall shear stress and stays below it for at least
3 eddy turnover time units. We are calling such low-drag events
hibernating turbulence. The ensemble average of all the instanta-
neous hibernation events is shown as a thick green line. On average
the wall shear stress during hibernation falls to a plateau in the time
interval 0.7 ≤ t∗ ≤ 2.8 and is preceded by a sharp peak in the wall
shear stress (higher than the mean, τw) during −0.8 ≤ t∗ ≤ 0. These
characteristics of hibernation are observed for a range of Reynolds
numbers and threshold criterion. Similarly, for hyperactive intervals
we select instances when the wall shear stress becomes more than
110% of the mean and remains higher than the specified threshold
for t∗ > 3 (Figure 2(b)).

To identify low and high drag regions spatially, we choose a
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(a) Hibernation, τw ≤ 90%τw
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(b) Hyperactivity, τw ≥ 110%τw

Figure 2. Instantaneous (thin grey lines) and ensemble-averaged
(thick green solid line) wall shear stress before, during and after the
intervals of hibernation and hyperactivity at Reτ = 85. Here, t∗ is
the time measured in units of eddy turnover times.

detector function, which is a function of flow properties at the wall
or in the fluid region. The detector function is lowpass-filtered and
thresholded that results in demarcation of weakly and strongly tur-
bulent areas. The sum of the absolute values of the streamwise wall
shear stress and the spanwise derivative of the streamwise velocity
is chosen as the detector function, i.e.,

D ≡
∣∣∣∣∂U

∂y

∣∣∣∣
w
+

∣∣∣∣∂U
∂ z

∣∣∣∣
y+=15

(1)

The filtered signal is then thresholded using Otsu’s method
(Otsu (1979)) — an image-processing technique used to automati-
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Figure 3. Edges between high- and intermediate-drag regions
(solid) and between intermediate- and low-drag regions (dashed).
Flow is from left to right.

cally perform image segmentation by determining threshold(s) be-
tween distinct regions such that each region shares certain charac-
teristics. It can also be used for multilevel thresholding; in gen-
eral, the number of classes is one more than the number of thresh-
olds. Another simple technique of conditionally partitioning data
sets into distinct groups or clusters such that properties in the same
cluster are more similar to each other than those in other clusters
is k-means clustering. Even though the k-means and Otsu algo-
rithms are different, it can be shown that they both extremise the
same objective function (Liu & Yu (2009)). For a given snapshot,
we find boundaries between regions of varying levels of turbulence.
We emphasise that there are no explicit thresholds of either time
or stress level in Otsu’s method — all we specify is the number
of classes we want the data at each time instant to be classified
into. Otsu’s method picks out the optimum threshold(s) by min-
imising the intra-class variance, or maximising the inter-class vari-
ance. We specify that three classes be sought — low, medium and
high. The boundaries (or edges) between any two classes results
in demarcation of weakly, intermediately and strongly fluctuating
regions (hibernating, active and hyperactive). An example of the
result of Otsu’s algorithm is shown in Figure 3. The contours repre-
sent the wall shear stress patterns from an instantaneous flow-field
at Reτ = 85. The solid black line represents the demarcation line
between high-drag and intermediate-drag regions and the dashed
black line separates the intermediate-drag areas from the low-drag
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Figure 4. For caption see the right column.
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Figure 4. (a) Unconditional (solid lines) and conditional (sym-
bols) streamwise mean velocity profiles at Reτ = 85. (b) Condi-
tionally averaged velocity profiles for low-, intermediate- and high-
drag regions occurring spatially at different Reynolds numbers. (c)
Mean velocity profiles of lower and upper branches ECS (shown in
orange) in Newtonian flows in the minimal channel (Park & Gra-
ham (2015)). Velocity profiles numbered (i)-(iii) are instantaneous
profiles in the minimal channel at time instances when the turbulent
trajectory approaches the branches LB1, UB and LB2, respectively.

areas. A distinct difference between the three regions is observed —
areas enclosed by solid lines show high wall shear stress and strong
fluctuations whereas the areas enclosed by dashed lines are smooth,
local wall shear stress values are low and the variations are small.
Regions between solid and dashed lines lie in the intermediate-drag
regime. The average size of the low-drag patches in the streamwise
and spanwise directions, respectively, are 318× 46 for Reτ = 70,
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288× 32 for Reτ = 85 and 278× 29 for Reτ = 100. Clearly, the
area of the region experiencing low-drag depends on the Reynolds
number — as the Reynolds number is increased, the area occupied
by low-drag regions decreases. In general, the occurrence of low-
drag events, both temporally and spatially, decreases as Reynolds
number increases (Kushwaha et al. (2017); Whalley et al. (2017)).

Conditional mean velocity profiles for hibernating and hy-
peractive turbulence at Reτ = 85 occurring both in time and in
space are presented in Figure 4(a). It is observed that low-stress
conditional averages from edge-detection scheme (spatial) nearly
matches pointwise thresholding results (temporal) — both profiles
are shifted upward of the unconditional mean profile and lie close
to the lower branch ECS mean profile. Similarly, the mean velocity
profiles during hyperactivity, both temporal and spatial, lie below
the unconditional time-averaged profile. The hibernation profiles in
a large domain Newtonian flow also lie close to the lower branch
ECS profile near the wall (up to y+ ≈ 30) observed in a minimal
channel. Figure 4(b) shows conditional mean velocity profiles for
low-, intermediate- and high-drag regions at friction Reynolds num-
bers of 70, 85 and 100. Only a weak dependence of conditional
profiles on Reτ is observed. Just like the data presented in Figure
4(a) for Reτ = 85, all the spatially averaged profiles at different
Reynolds numbers plotted in Figure 4(b) show a very good cor-
respondence with the corresponding temporally averaged profiles;
the temporally averaged profiles are not shown to avoid overcrowd-
ing. Illustrated in Figure 4(c) are the velocity profiles of one family
of exact coherent states obtained by Park & Graham (2015) in the
minimal channel: we have compared our low-drag results with the
LB2 branch of this family. Also shown as (i), (ii) and (iii) are three
instantaneous velocity profiles in the minimal channel at time in-
stances when the turbulent trajectory approaches the branches LB1,
UB and LB2, respectively.

Similar observations have also been made experimentally by
Whalley et al. (2017). They observed intermittency of low-drag
pointwise measurements of wall shear stress within Newtonian tur-
bulent channel flow at transitional Reynolds numbers. The mean
velocity profile for low-drag events is shifted upward and matches
the conditional profile obtained from the DNS at same friction
Reynolds number, which in turn, matches the lower branch ECS
mean profile in the near-wall region (y+ . 30).

CONCLUSIONS

Intermittent excursions towards low and high drag states,
which have earlier been found to exist temporally in minimal chan-
nels, have also been observed to occur both temporally and spa-
tially in large-domain Newtonian flows. Using conditional sam-
pling and edge-detection techniques, we identified these transient
intervals and it was found that the local near-wall properties and
structures of the low drag events in particular resemble one family
of the lower branch exact coherent states in the minimal domain.
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