10% International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), Chicago, USA, July, 2017

DNS of Couette flows with wall transpiration up to Re; = 1000

S. Kraheberger

Chair of Fluid Dynamics
TU Darmstadt

S. Hoyas

Instituto de Matematica Pura y Aplicada

Universitat Politécnica de Valéncia

Otto-Berndt-Str. 2, 64287 Darmstadt, Germany Camino de Vera, 46024 Valéncia, Spain

kraheberger@fdy.tu-darmstadt.de

sergio.hoyas@mot.upv.es

M. Oberlack

Chair of Fluid Dynamics
TU Darmstadt
Otto-Berndt-Str. 2, 64287 Darmstadt, Germany
oberlack@fdy.tu-darmstadt.de

ABSTRACT

We present a new set of direct numerical simulation data of a
turbulent plane Couette flow with constant wall-normal transpira-
tion velocity Vj, such that there is blowing on the lower side and
suction on the upper. Hence, there is no net change in flux to pre-
serve periodic boundary conditions in streamwise direction. Simu-
lations were performed at Re; = 250,500, 1000 with varying tran-
spiration rates in the range of VOJr ~ 0.03 to 0.085. Additionally, a
classical Couette flow case at Re; = 1000 is presented for compari-
son.

As a first key result we found a considerably extended log-
arithmic region of the mean velocity profile, with constant indi-
cator function k = 0.77 as transpiration increases. Further, tur-
bulent intensities are observed to decrease with increasing tran-
spiration rate. Mean velocities and intensities collapse only in
the cases were the transpiration rate is kept constant while they
are largely insensitive to friction Reynolds number variations.
The long and wide characteristic stationary rolls of classical tur-
bulent Couette flow are still present for all present DNS runs.
The rolls are affected by wall transpiration, but they are not de-
stroyed even for the largest transpiration velocity case. Spec-
tral information indicate the prevalence of the rolls and the exis-
tence of wide structures near the blowing wall http:/www.fdy.tu-
darmstadt.de/dns_database/direct_numerical_simulation.de.jsp .

INTRODUCTION

Direct Numerical Simulation (DNS) is a fundamental tool for
the study of wall turbulence, and it is the only available one when
experiments are difficult, or simply impossible, to perform. Focus-
ing on turbulent channel flow, there has been a continuous increase
in Reynolds number of simulation of Poiseuille flows since the sem-
inal work of Kim ez al. (1987), followed by the works of Moser e? al.
(1999), Del Alamo et al. (2004), also Hoyas & Jiménez (2006) and,
the very recent works by Bernardini ez al. (2014) and Lee & Moser
(2015). Turbulent Couette flows have been studied less, most prob-
ably due to the long and wide streamwise rolls existing in this flow,
as it has been stated experimentally (Tillmark, 1995; Kitoh et al.,
2005; Kitoh & Umeki, 2008) and numerically (Bech et al., 1995;
Komminaho et al., 1996; Tsukahara et al., 2006; Pirozzoli et al.,
2011, 2014; Avsarkisov et al., 2014a). The necessity of large boxes
to capture these structures makes the study of this flow much more
computationally expensive than a turbulent Poiseuille flow. Fur-
thermore, these rolls seem to grow with Reynolds number, while at
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Figure 1: Schematic view of Couette flow with the moving
wall velocity U, and wall-normal transpiration velocity V.
Fluid is blown through the lower wall and removed from the
upper wall at a constant rate. The computational box is not
scaled.

the same time the Kolmogorov scale decreases. In the case of non-
canonical boundary conditions such as wall-normal transpiration,
the bibliography for both type of channel flows is considerably re-
duced. For Poiseuille Transpiration Flow (PTF), the interest reader
is referred to Avsarkisov et al. (2014b). In the case of a turbulent
Couette with wall Transpiration Flow (CTF), up to the knowledge
of the authors, the present study is the first work addressing this
phenomenon. Moreover, the kinematics of CTF are more similar
to turbulent asymptotic suction boundary layers (TASBL, see for
instance Bobke et al. (2015) and references therein) than to PTF.
This was somehow expected as in the TASBL, the thickness of the
boundary layer is kept constant through the use of suction. An inter-
esting conclusion of Bobke et al. (2015) is that realistic experiments
of this kind of flows are nearly impossible.

NUMERICAL METHOD

In this work, a new set of DNS of a plane CTF has been
conducted within a computational box of Ly = 87h, L, = 2h and
L, = 37mh, with spanwise and streamwise periodicity. In the past,
this box has been used for very large turbulent Poiseuille flow sim-
ulations (Hoyas & Jiménez, 2006; Lee & Moser, 2015). However,
it is known from the work by Avsarkisov et al. (2014a) that this
computational box might be too narrow and short to adequately re-
produce a turbulent Couette Flow. In the spanwise direction, it was
confirmed in Pirozzoli et al. (2014), that for pure Couette flow the
correlation length in this direction is nominally infinity. In the case
of the streamwise correlation length, we are interested to investi-



Case  Line  Re; Rey, U,/Vo U,/US®
co0 —o— 1000 O o0 1
co2 e 1000 32 1243 1.382
C05 ———— 1000 50 685 1.907
C10 1000 60 492 2.741
c20 —— 1000 75 395 4.402
Al2 —v— 250 19 400 2.673
Al5 —A— 500 375 400 3.342
A0 —O— 500 42 323 3.60

Vi N N, N, TUp/L. Tug/h

0 6144 383 4608 9.0 20.5
0032 3072 383 2304 187 322
0051 3072 383 2304 220  60.1
0063 3072 383 2304 220 975
0071 3072 383 2304 247 194
0070 768 251 576  60.6 281
0070 1536 251 1152 254 151
0085 1536 251 1152 523 344

Table 1: Parameters of the simulations. Three different Reynolds numbers are presented: Re; is based on the mean friction
velocity and the channel half-width & and Rey, is based on the transpiration velocity Vy and h. The third column, U, /Vj, is the
ratio between the velocity of the wall U,, and Vj, which defines a Reynolds number usually employed for TASBL, see Bobke

et al. (2015). Next, the velocities U,, and Vj are given in terms of the wall-velocity of the pure Couette case,

USY, and the mean

friction velocity u, respectively. Ny, Ny, N; are the numbers of collocation points. The last two columns denote the computational
time span while statistics were taken in wash-outs (U, /L,) and eddy turn-overs (u;/h). T is the computational time spanned by
those fields. Line shapes given in the second column are used to identify the cases through all the figures of the present paper.

gate if the transpiration velocity is capable of breaking down the
large streamwise rolls appearing in classical Couette Flows. Thus,
the size of the box is a compromise between the capacity of running
enough parametric cases and a large enough box to capture some of
the largest scales of the flow.

The streamwise, wall-normal, and spanwise coordinates are
x,y, and z and the corresponding velocity components are U,V and
W or, using index notation, U;. Statistically averaged quantities are
denoted by an overbar, whereas fluctuating quantities are denoted
by lowercase letters, i. e. U = U +u. The flow is driven by a
constant velocity of the upper wall such that we have the boundary
condition U (x,0,z) = 0 and U (x,2h,z) = U,,. The blowing-suction
process is implemented through the boundary condition V (x,0,z) =
V(x,2h,z) =V, where Vj is the constant transpiration velocity. The
nominal Reynolds numbers studied are Re; = 250, 500 and 1000,
based on the mean friction velocity u; and on the channel half-
width /. In all cases the mass flow is keep constant at 0.89, similar
to Hoyas & Jiménez (2006); Avsarkisov et al. (2014a). The mean

b)2 s )2
friction velocity is defined as u; = % where the local
b

b—/v|oU|” and uf = \/v|9,U[". Here
and subsequently, superscripts b and s correspond to variables taken

on the blowing and the suction side, respectively. See figure 1 for a
sketch of the previously described boundary conditions.

friction velocities are u

The Navier-Stokes equations, employed to investigate the
present flow, are discretized as described in Avsarkisov et al.
(2014b). Initial fields were either taken from previously calculated
Couette flows, imposing the new boundary conditions, or by in-
creasing the transpiration velocities in previously computed cases.

Due to the lack of experimental data or numerical simulations,
it has been impossible to do a formal validation of the code. How-
ever, in the past the code has been employed to successfully run
simulations of turbulent Poiseuille flows (Hoyas & Jiménez, 2006;
Hoyas & Jiménez, 2008), turbulent Couette flows (Avsarkisov et al.,
2014a) and turbulent PTF (Avsarkisov et al., 2014b), while the
modifications in the code to impose the new boundary condition
have been minimal. In addition, simulations conducted at very low
transpiration velocity were similar to pure Couette flows. A com-
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parison with the laminar solution, which can be derived analytically
in form of an exponential function, and a comparison with the first
Re; = 1000 simulation reported (Pirozzoli et al., 2014) has been
performed. Tests show a perfect agreement between DNS data and
the analytic solution, though these results are omitted for brevity.

Table 1 summarizes the parameters of the present simulations.
The wall-normal grid spacing is adjusted to keep the resolution
at Ay = 1.51, i. e., approximately constant in terms of the local
isotropic Kolmogorov scale 1 = (v3/&)!/4 for every Re; case. In
wall units, Ay™ varies from 0.42 at the wall up to Ay™ ~ 7.2 at the
centerline. The wall-parallel resolution in Fourier Space for x and
zis AxT ~ 12.2 and AzT ~ 6.13. The case CO0 is a pure turbulent
Couette flow in a 167h x 2h x 6h computational box used as a ref-
erence case. The transpiration velocity grows for the cases C02 to
C20. Cases A15 and A12 were ran to study the effect of increasing
Re keeping the dimensionless parameters U, /Vy and V0+ approx-
imately constant. Case A20 was employed to see the effects of a
higher transpiration rate at a lower Reynolds number.

In every simulation, the flow had to evolve from an initial file,
which has been taken from previous different simulations. The code
was run until some transition phase has passed and the flow had
adjusted to the new set of parameters. These transitions until the
simulations reached a statistically steady state, which can be very
time consuming, are not contemplated in the most right column of
table 1. One of the measures used to asses that the code has run
enough time to compile accurate statistics, is to compute the total
shear stress, which for the CTF reads 1, + VU = v%{ —uv, and,

non-dimensionalized by 2, yields

dotb
W +uv

+b:04

1+, P00 — 1)

Another important consequence of this equation is that, evaluating
it at the upper wall and employing the local friction velocities, we
obtain

S
Uz

)2 = (u})* = VoUy, )

(
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Figure 2: Lines as in Table 1. Mean velocity profile scaled in
outer scales (U,,, h).
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Figure 3: Lines as in Table 1. Mean velocity profile scaled
in inner local scales at the suction (a) and blowing (b) sides.
Blue thin solid line corresponds to viscous sublayer linear
scaling law; red thin solid line represents near-wall classical
logarithmic scaling law at kK =0.41 and B = 5.

linking friction velocities with the value of the transpiration and the
moving wall velocity.

In the present study we restrict ourselves to describe the new
data coming from these simulations and to compare them with the
results obtained for the pure Couette flow and other flows with wall
transpiration and pointing out the key differences.

STATISTICS
Mean velocity profile

The mean velocity profiles may be taken from figure 2. This
figure shows how transpiration leads to the loss of symmetry even
for small V0+, leading to increasingly higher mean velocity gradi-
ents at the suction wall and lower gradients at the blowing wall.
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Figure 4: Lines as in Table 1. Mean velocity profile at the
suction side scaled in uj. Cases plotted: C20, Al2, A15
and A20. Red thin solid line represents modified logarithmic
scaling law for kK =0.77 and B = 8.7.
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Figure 5: Lines as in Table 1. Indicator function for the
logarithmic layer, i. e. the inverse of the von-Kdrman-
constant scaled with u}, (a) with dashed lines at k = 0.41
and k¥ = 0.77, (b) in semi-logarithmic plot. Suction wall is at
the left side of the plots.

Figure 3 shows U at the suction and blowing sides scaled by the
local uz. At the suction wall the flow appears to follow the linear
law in the viscous sublayer. However, at the blowing wall the in-
terval where the linear law holds is shorter than the one near the
suction side, and it gets further reduced as the transpiration number
is increased. In the same figure, the red solid line shows the log-
arithmic profile, U = LIny™ + B at the classical coefficient values
of Kk =0.41 and B = 5.1 Pope (2000). Qualitatively, the devia-
tion from this logarithmic profile is in accordance with Sumitani &
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Figure 6: Lines as in Table 1. Velocity fluctuation intensities of the CXX-cases. Left column, #’ and v'; right column w'
and wv. (a) and (b) adimensionalized by uj, plotted versus dimensionless distance from the suction wall in local inner units
O = (2—y/h)u/v). (c) and (d) adimensionalized by u?, plotted versus distance from blowing wall in outer units. (e) and (f)

adimensionalized by u;.

Kasagi (1995) and Kametani et al. (2015). This change in the slope
seems to stop when V(;L is larger than 0.07 approximately, corre-
spondig to Us./Vjy < 400. Figure 4 shows U for the C20 and all A
cases compared to a modified log law with k =0.77 and B = 8.7,
with an excellent agreement.

However, using LES, Schlatter & Orlii (2011) gave a value of
k =0.82 and B = 9.2 for a TASBL, independent of both U/ V) and
Re; numbers. Further, Bobke et al. (2015) observed k = 0.89 and
B =9.6 for a TASBL at U, /Vy = 333. It is clear from figure 3, that
the slope of U changes with Us /Vj.

Figure 5 shows the mean velocity profile in terms of the in-
verse of the Kdrmdn constant 1 = y*$9U+/dy*s = &, which is
the definition of the log-indicator function. Apparently, with in-
creasing transpiration rate, the region where this term is almost
constant increases drastically. In fact, for the highest transpira-
tion rate presented here, an approximately constant region between
y™ =80 and y™ = 1000 can be observed. This flattening effect
is related to the vanishing of the secondary maximum that exists
around 300" for the COO case. The value of the log indicator
function X for the second set of simulations (C20, A20, A15 and
A12) can be seen in the semi-logarithmic representation in figure
5b. There is a perfect collpase of the data below the logarith-
mic layer, i.e. essentially comprising the viscous sub-layer and the
buffer layer, as the lower Reynolds number cases A collapse onto
the Re; = 1000 curve. All cases present a similar extended region,
and in the range of traspiration numbers studied, this seems to be
an intermediate limit. The existence of a displaced secondary maxi-
mum or minima can be discarded in the range of the presently stud-
ied parameters.

One of the possible reasons for the greatly extended range of
validity of the log-region might be the value of u; which is ten times
larger than the one for the classical Couette flow. As will be shown
later, this effect can also be tentatively linked to the size and struc-
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ture of the eddies present in the flow.
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Figure 7: Lines as in Table 1. Velocity fluctuation intensi-
ties of the AXX and C20 cases plotted over dimensionless
distance from the suction wall in local inner units

Turbulent intensities

In figure 6, the root-mean-square velocity fluctuations u§+

1/2
(u[,-]u[i] *) , where index in brackets denote no summation, and

uv'™ = v are presented for the different transpiration cases to be

also compared to the pure Couette case. As for the mean velocity
U, the scaling with a local u; does not collapse the data.

It should be mentioned that normalization is not trivial here,
since there are several velocity scales acting on the flow. Through
the BC we have the external scales U,, and V{y, while internally we
have the two friction velocities u% and u?, which are all related
through the global momentum balance in equation 2. As was also
observed in previous works investigating the TASBL, (Sumitani &
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Figure 8: Budgets for Reynolds stresses. Cases for V,;” = 0.07 at the suction side are shown. (a) By, (b) Byy, (C) By, (d) Byy.
Production [, dissipation ¢, viscous diffusion o, pressure-strain V, pressure diffusion A, turbulent diffusion *. Lines change
from Table 1. Case C20, solid. Case A15, dashed. Case A12, dash-dot.

Kasagi, 1995; Kametani et al., 2015; Schlatter & Orlii, 2011; Bobke
etal., 2015), we also find that scaling with the local friction velocity
the turbulent intensities get reduced at the suction wall and increase
near the blowing wall. Further, the known peaks of u," and w/"
(Hoyas & Jiménez, 2006; Avsarkisov et al., 2014b) disappear at the
blowing wall.

The situation when keeping the transpiration rate constant,
while at the same time varying the Reynolds number, i. e. com-
paring the C20 case and all A cases is depicted in figure 7. In this
case the local friction velocity u} seems to be the most appropri-
ate scaling as it nicely collapses the data, but it fails completely in
the suction wall (not shown). This failure is apparently a conse-
quence of the term VyU,, in the momentum conservation equation,
as the product U, VO+ is constant for the C20 and A cases. This
apparent scaling problem near the suction side will be studied in a
companion paper. To facilitate the visualization and the compari-
son between both walls, in most of the figures and discussion that
follows, global wall units will be used.

Turbulent budgets
The budget equation for the Reynolds-stress tensor compo-
nents u;uj, is given by

7Duiuj
ij=—p, —hjt&j+Tj

I + 11 4 Vi, 3)

where D/Dt is the mean substantial derivative and (uy,up,u3) =
(u,v,w). The different terms on the right hand side are referred to
as production, dissipation, turbulent diffusion, pressure-strain, pres-
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sure diffusion, and viscous diffusion. They are respectively defined
according to

Pij = —uiudy U j — wjtig oy, Ui, (4a)
£ = —2voyuioyuj, (4b)
Tij = — Oy Uiljli, (4c)
ITj; = p(dy;ui + dxu;), (4d)
I, = —0y, (8upwj + & pi) (4e)
Vij = Vo, %W;, (40)

In the previous definitions, &;; is Kronecker’s delta and repeated
index imply summation over k = 1,2,3. In canonical wall flows
without wall-transpiration (Hoyas & Jiménez, 2008; Avsarkisov
et al., 2014a), DTuj/Dt is zero. However, as soon as V| is dif-
ferent from zero, the convective derivative in y—direction does not
vanish. Hence, from the four terms, the only remaining one is
Bij= VQQXZW.

Selected non-trivial budgets are shown in figures 8, and, be-
cause of limited space, only some cases are plotted. The data from
all the cases can be downloaded from our webpage given at the end
of the abstract above. A general observation is that transpiration
leads to a reduction of essentially all terms in the balance equa-
tion for w;u; in (3). Near the blowing wall, the values are several
orders of magnitude smaller than at the suction wall (not shown).
The peaks of the different quantities are in the same location as for
the canonical flows Hoyas & Jiménez (2008). As it happens for
the turbulent intensities, u; alone seems not sufficient to properly



scale i.e. collapse the turbulent budget. However, studying a con-
stant suction at varying Reynolds number, i.e. considering the case
of V0+ = 0.07, the curves of the budgets B, and B,,,, for the cases
A12, A15 and C20 collapse into one curve, as can be seen in figure
8. This clearly indicates that the value of VO+ is the key parameter
for most of the turbulence properties.

The data presented in this section are in agreement with several
other works of Sumitani & Kasagi (1995); Kametani et al. (2015);
Bobke er al. (2015), when the local friction velocity is used for scal-
ing the flow. The value of the intensities increase near the blowing
wall and decrease close to the suction side as expected. However,
this effect is larger than in the flows studied previously. At the blow-
ing wall, as the transpiration velocity increases, the value of Re‘;
gets reduced. For V' > 0.06 the known peaks of the intensities of
ué*b and wﬁb disappear. As a difference to previous works, the
global Re; can be used to analyze the behavior of the flow at both
walls. The damping of turbulence induced by the reduction of the
local friction velocity at the blowing wall, does not coincide with
an increase of the turbulent budgets near the blowing wall when
VT > 0.06 as turbulence is dampened in both walls, when scaled in
global wall units.

CONCLUSION

We have presented, for the first time, a set of turbulent plane
Couette flow simulations extended by a wall-normal transpiration
velocity. The main importance of the present paper lies in the in-
vestigation of the effects due to the transpiration velocity and the
analysis of the turbulent structures detected in the flow which are
rather distinct on the blowing side and the suction side. A second
important point is the search for the proper velocity scales to appro-
priately scale the flow and collapse the statistical data. The main
difficulty about the latter issue is due to the four velocities acting
on the flow. In particular, we have the external velocities U, and
Vo extended by the two local friction velocities u5 and 2, although
they are all interconnected by the mean momentum equation (1).

From the computations at the highest transpiration number, i.
e., VO+ = 0.07, we observe a collapse of the mean velocity and the
second moments in wall units for different Reynolds numbers, es-
sentially showing that VOJr is the key parameter to control the flow
acting as an invariant. This number has been previously used as
Reynolds number in TASBL with injection and suction. Further,
it is observed that at the highest Reynolds number and the high-
est transpiration rate, the slope constant of the logarithmic law in-
creases to kK = 0.77 representing an extremely extended logarithmic
region, much longer than the one that can be observed in turbulent
Poiseuille or Couette flows at similar Reynolds numbers. Further,
one of the main effects of transpiration is the reduction of the value
of turbulent intensities and v ", and thus a general reduction of tur-
bulence in the flow.

It is noteworthy to mention that the long and wide structures
characteristic of turbulent Couette flows at zero transpiration, are
still present. Their footprints are still present in the one-dimensional
spectra of the flow. The only small change is that this structures are
moved towards the suction wall. The spectra near the blowing wall
presents two peaks, created by the transmission of energy due to the
transpiration velocity.
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