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ABSTRACT
The purpose of this study is to gain an understanding

of the formation of arterial secondary flow structures due to
physiological parameters such as geometry (curvature), pul-
satility and harmonics of inflow conditions. Accordingly, in
vitro experimental investigation of arterial secondary flow
structures was performed using the magnetic resonance ve-
locimetry (MRV) technique at Stanford University. In this
paper, we discuss the kinematics of vorticity in two re-
gions of a 1800 curved artery model viz., the entrance- (or
straight-inlet pipe) and the 180o curved pipe-region. We
applied the Womersley solution in the entrance-region to
ascertain the unsteady pressure drop per unit length and in-
plane vorticity for a pulsatile, carotid artery-based flow rate
waveform. In the 180o curved pipe region a simple circu-
lation budget was performed to discern vortex-splitting of
large-scale Dean-type vortices.

INTRODUCTION
Arterial secondary flow structures are known to influ-

ence wall shear stress and exposure time of blood-borne
particles that are closely related to atherogenesis, especially
in arterial curvatures. Our research program is motivated by
the clinical implications of spiral blood flow patterns associ-
ated with patient-specific diagnosis and pathology, wherein
hemodynamics and coherent motions of vortices could po-
tentially impact the overall cardiovascular health.

The experimental study presented in this paper is char-
acterized by Equation 1 that relates the dimensionless pres-
sure gradient in the streamwise direction (p`) in a tube with
uniform curvature. In Equation 1, G is a superimposed
mean pressure gradient in the otherwise (zero-mean) oscil-
latory pressure gradient, V is a dimensionless velocity am-
plitude and α is the Womersley number (Pedley, 1980).

−p` = G+α
2 V cos α

2t (1)

Waters & Pedley (1999) and Lyne (1971) among several
others have analyzed problems of the type, G = 0 in Equa-
tion 1. One important outcome of their work is the char-
acterization of a two-vortex system in the inviscid core that
has been referred as the Lyne vortex system in the litera-
ture. The Lyne-system is considered to be inviscid and sur-
rounded by a viscous Stokes layer. The Dean vortices gen-
erated within Stokes layer drive a two-vortex (Lyne) system
in the opposite orientation.

This study deals with arterial flows where in general,
G 6= 0 in Equation in 1. The central objective of this
study is to develop an understanding the kinematics of vor-
ticity in arterial secondary flow structures building on the
MRV measurements made by Plesniak & Bulusu (2016).

Bulusu & Plesniak (2013) and Bulusu & Plesniak (2015)
have discussed the spatio-temporal, evolution of the large-
scale vortical structures associated with secondary flows,
i.e. deformed Dean-, Lyne- and Wall-type (D-L-W) vor-
tices. We hypothesize that the persistence of arterial sec-
ondary flow vortices as observed in two-dimensional cross-
sections are intrinsically related to the influence of the out-
of-plane flow and tilting that could be observed in three-
dimensional fields. In addition, the unsteady pressure drop
upstream to the curvature informed by the the degree of pul-
satility in the flow provides that necessary boundary condi-
tions in the flow field.

In this paper we present our analysis considering the
following two regions of the 1800 curved artery model: (i)
Entrance region where the degree of flow pulsatility is de-
scribed by the Womersley number and is defined as the ratio
of transient inertia forces (ρωu) and viscous forces (µu/r2),
albiet in straight pipes with oscillatory pressure gradient
(Womersley, 1955) and (ii) The curved region where vortex
decay-related phenomena such as spliting can be addressed
via the viscous, material rate of change of circulation.

EXPERIMENTAL ARRANGEMENT
The MRV experiments on the curved artery model

were performed at the Richard M. Lucas Center at Stan-
ford University using a 3 Tesla General Electric (Model:
Discovery 750 MRI system) whole body scanner with an
eight-channel cardiac coil. We followed the guidelines of
phase contrast MRI (PC-MRI) elegantly presented along
with description of data acquisition and post-processing of
three-component, three-dimensional (3C-3D) MRV mea-
surements (Elkins & Alley, 2007; Pelc et al., 1994). The
curved artery model has pipe radius, r = 0.25 inches (or
0.00635 meters), inlet and outlet pipe lengths were approx-
imately, 2 meters long and the curvature ratio, δ = r/R =
1/7. Recent papers by Banko et al. (2015) and Jalal et al.
(2016) outlines the benefit of MRV in comparison to other
non-invasive techniques of velocity data acquisition and un-
certainty in measurements.

Three-component, phase-averaged velocity data were
obtained throughout the model volume at a spatial resolu-
tion of 0.6 mm in each Cartesian direction (≈ 5% of the
diameter of the tube that is 12.7 mm). The scanned volume
includes both the fluid and solid model walls. Wall identi-
fication was performed via thresholding based on the signal
magnitude: voxels with magnitude greater than a preset-
threshold value of the magnitude of the average noise were
identified as fluid (Banko et al., 2015). The evaluation of
signal-to-noise ratios, measurement uncertainty due to ve-
locity encoding and the partial volume effects can be as-
certained following detailed discussions in Elkins & Alley
(2007), Banko et al. (2015) and Pelc et al. (1994). Details
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Table 1. MRV recording parameters

Flow geometry 3D - 180-degree curved

artery test section

Imaging volume 200 mm × 116 mm × 21.6 mm

Imaging matrix 322 × 192 × 36

Temporal resolution 40 phases in 4 seconds

Spatial resolution 0.6 mm (isotropic)

Velocity encoding R/L 80 cm/s

A/P 40 cm/s

S/I 90 cm/s

of our experiments and uncertainty in measurements can
be found in Plesniak & Bulusu (2016). A programmable
gear pump (Ismatec model BVP-Z) was used to provide
the inflow (flow rate) and controlled using a MATLAB pro-
gram with the NI-6229 data acquisition module. The phase-
locked measurements in the MRI system were triggered by
a pulse provided by the NI-6229 data acquisition module
at onset of every cycle of the digitized carotid artery-based
flow rate waveform as shown in Figure 1.

Velocity data were obtained in separate scans of 20
phase bins per period of the cardiac flow rate waveform.
A total of 40 phase bins were reconstructed using linear
interpolation in time. Data were acquired in 6 scans with
the ‘flow-on’ and 4 scans with the ‘flow-off’. The average
’flow-off’ case was subtracted from each of the ’flow-on’
phases to reduce the background noise and phase-errors in
the velocity data during the post-processing. A total scan
time for a single scan was ≈ 44 minutes, which is much
longer than all flow time scales, with the run of 10 scans
lasting ≈ 7 hours was performed. Post-processing of MRV
data was performed using EnSight (v10.1.6) desktop data
visualization software. A summary of the MRV recording
parameters is presented in Table 1.

Blood-analog fluid and the physiological in-
flow waveform

The MRV experiments utilized Glycerol-DI water so-
lution (40%/60% by weight) as the working fluid with the
addition of a trace amount of copper sulfate to maximize
signal intensity. The fluid kinematic viscosity was mea-
sured at 3.761(±0.23) CSt (or 3.761× 10−6 m2/s) using
a standard Ubbelhode viscometer at room temperature and
and density, ρ = 1078 kg/m3. The physiological carotid
artery waveform was reconstructed from ultrasonic flowme-
ter measurements on the left carotid artery reported by
Holdsworth et al. (1999). This waveform was discretized
to 40 evenly-spaced instants (in time) spanning a period (T )
of 4 seconds. The time interval between discretized points
was 100 ms. All the experiments were performed at the
controlled room temperature of 24oC(±1o).

A summary of the hydrodynamic experimental param-
eters is presented in Table 2. The values of Womersley num-
ber (α = 4.22), mean Reynolds number (Remean) and one
mean Dean number (Kmean) are reported for one complete
cycle of the composite carotid artery flow rate waveform
(T = 4 s) and a tube inner diameter of 12.7 mm (Figure 2A).
The physiological waveform is the superposition of multi-
ple harmonic frqeuncies and therefore, each harmonic can
be associated with a unique Womersley (α), mean Reynolds

Table 2. Experimental hydrodynamic parameters

Curvature ratio δ = r
R

Mean volumetric
flow rate

Qs 13.7
mL/s

Maximum volumet-
ric flow rate

Qmax 61.1
mL/s

Amplitude ratio γ = Qmax
Qs

4.4

Waveform period T 4 seconds

Mean Strouhal
number

Stmean =
ωr
Us

0.09

Mean Dean number Kmean =√
2 (Us) r

ν
(r/R)

1
2

102

Max. Dean number Kmax =√
2 (Umax) r

ν
(r/R)

1
2

441 (t/T =
0.175)

Mean Reynolds
number

Remean =
Us d

ν
380

Max. Reynolds
number

Remax =
Umax d

ν
1650 (t/T =
0.175)

Womersley number α = r(ω/ν)
1
2 =

(Stmean Remean/2)
1
2

4.22

(Remean) and a mean Dean number (Kmean) as discussed in
greater detail in the analysis presented in this paper.

RESULTS AND DISCUSSION
The analysis for vorticity estmation and circulation of

large-scale vortices presented in this paper was broken into
two regions viz., entrance region and curved region. The
entrance region does not have large-scale vortices but has
vorticity predominantly in the near-wall region. Addition-
ally, the circulation in the large-scale vortices in the curved
artery model changes due to the viscous forces acting on it.
These abstractions can be viewed from the point of view of
vortex lines that are tangent to the vorticity vectors as dis-
cussed in the results and analyses that follow.
Estimation of vorticity in the entrance region

The pulsatile flow rate [Q(t)] was measured at the lo-
cation upstream of the curved pipe. The upstream flow con-
ditions can be decomposed into a steady and the oscillatory
flow parts, i.e. the ensuing pressure, velocity and flow rate
can be written as a linear combination of steady and oscil-
latory parts of the flow i.e., p(z, t) = ps + p̂(z, t);u(z, t) =
us + û(z, t);Q(t) = Qs + Q̂(t).

Consequently, the governing equation can be grouped
into the steady and the oscillatory parts for corresponding
Poiseuille flow and Womersley flow solutions:

∂ ps

∂ z
−µ(

∂ 2us

∂ r2 +
1
r

∂us

∂ r
) = 0 (2)

ρ
∂ û
∂ t

+
∂ p̂
∂ z
−µ(

∂ 2û
∂ r2 +

1
r

∂ û
∂ r

) = 0 (3)

From MRV measurements we calculated the pulsatile
flow rate [Q(t) =

∫
S(uz(r)|t · n̂)dS]. The corresponding

steady pressure ( d ps
dz ) and oscillatory pressure drops per

unit length ( d p̂(t)
dz ) needed to be calculated for vorticity esti-
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Figure 1. Experimental set-up 180o curved tube model for curved arteries

mates. The solution of the steady (Poiseuille) flow problem
(Equation 2) is Qs =

p1−p2
8µ` πr4, where the pressure drop per

unit length is d ps
dz = p1−p2

` .

The following oscillatory flow solution of Equation
3 was derived by Womersley (1955), for a pressure drop
per unit length assumed to be a periodic function in time
( d p̂(t)

dz = p1−p2
` = Aeiωt ):

Q̂(t) =
πr2

ρ

A
iω
{1− 2αi3/2

i3α2
J1(αi3/2)

J0(αi3/2)
}eiωt (4)

In Equation 4 the angular frequency is ω = 2π f and the
amplitude is A. Further, α = r

√
ρω

µ
, is known as the Wom-

ersley number and J0, J1 are Bessel functions of the first
kind of order-zero and order-one, respectively.

The oscillatory part, Q̂(t)), is a complicated periodic
function. It is expressed it as a Fourier series (or sum of
n-harmonics), the sum of n-cosines and n-sines and substi-
tuted it into the Womersley solution (Equation 4) to calcu-
late the oscillatory pressure drop per unit length.

The oscillatory part of the flow rate, Q̂(t), is shown in
Figure 2A, along with the certain harmonics (n = 1,3,10).
In Figure 2B, an and bn are the Fourier coefficients in the
summation equation inset in the figure. There are few obvi-
ous attributes can be associated with Figures 2A and B. The
1st-harmonic clearly has the same time period as the time
period (T ) of the composite oscillatory waveform (Q̂(t))
and consequently, the same frequency ( f1 = 1/T = 1/4 Hz).
The successive harmonics (n=2,3,...) have frequencies that
are scalar multiples of the 1st-harmonic frequency ( f1 =
0.25 Hz, f2 = 0.5 Hz, f3 = 0.75 Hz,...). This can be ob-
served in the frequencies corresponding to an and bn in Fig-
ure 2B. The partial sums of harmonics are shown in Figure
2C, to demonstrate that the sum of 10-harmonics was suf-

ficient to reconstruct the composite oscillatory waveform.
This can also be ascertained from Figure 2B, wherein the
magnitude of the Fourier coefficients from 11th-harmonic
onward were negligible. The pressure drop per unit length,
d p̂n(t)

dz , was calculated for each harmonic (n) of the compos-
ite oscillatory flow rate, Q̂n(t), using Equation 4. The di-
mensionless pulsatile flow rate, Q(t)/Qs = (Qs+Q̂(t))/Qs,
and the analytically-calculated dimensionless pressure drop
per unit length, d p(z,t)/dz

d ps/dz , plotted over one time period (T )
in Figure 2D. It should be noted that a phase-lag between
pressure gradient and flow rate waveforms are clearly no-
ticed with the pressure gradient leading the flow rate.

The direction of vorticity vectors in the entrance re-
gion lie on the cross-sectional planes of the tube. There-
fore, the in-plane vorticity-component is effectively in the
θ − direction (r−θ − z coordinate system). In Figures 2E
and F, we present the variation of the real part of dimen-
sionless, upstream, in-plane vorticity ( ~ωθ

2π f ), with the radius
(r/rmax) as the parameter, the frequency associated with the
1st-harmonic ( f = 0.25 Hz and the time period, T = 4 s)
of the composite flow rate waveform. The vorticity is also
taken as the linear summation of the steady and oscillatory
parts obtained after calculating the curl of the steady and os-
cillatory velocity vector fields. It should be noted in Figure
2E, that at certain radii, the vorticity vectors reverse their
direction following the pulsatile velocity profiles and their
corresponding pressure drops. The phase-lag of vorticity
(Figure 2F) is ascertained from the driving pressure drop
per unit length in the entrance region. The near-wall, ~ωθ -
component (at r/rmax = 1) is proportional to the shear stress
along the entrance region. Figure 2G is a schematic repre-
sentation of the vortex lines under pulsatile inflow condi-
tions (~uz(r, t)) in entrance region of the curved artery model.
A representation of these vortex lines can be seen in Figure
3 upstream of the 4o−location, wherein there is minimal
out-of-plane vorticity.
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Figure 2. Entrance region flow conditions (A) Harmonics of oscillatory flow rate, Q̂(t) (B) Fourier coefficients of Q̂(t) (C)
Q̂(t) as a partial sum of harmonics (D)MRV-based dimensionless flow rate and Womersley solution-based dimensionless pres-
sure drop (E) Dimensionless vorticity ( ~ωθ

2π f ) at various pipe radii (F) Wall vorticity (G) Schematic representation of vortex lines
in the entrance region

Material volume-based circulation budget
analysis in the curved region

A precursor to the circulation budget analysis was the
characterization of out-of-plane (secondary flow) vorticity
in the native toroidal coordinate system using wavelet de-
composition methods at various angular cross-sections in

the 1800 curved artery model. Secondary flow structures are
conceptually modeled as swirling vortical structures that are
either rotation-dominated or strain-dominated. Cartesian
velocity components (ux,uy,uz) acquired during MRV se-
quence were transformed into special toroidal components
(ur,uψ ,uθ ) using EnSight software (v10.1.6), , where θ is
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Figure 3. Three-dimensional representation of flow in the 1800 curved artery model with out-of-plane vorticity marked at
various locations indicating the large-scale (D-L-W) vortices. Inset: Physiological flow rate waveform shows the time-instance
at which these data were acquired

the axial or out-of-plane direction. The transitional sec-
ondary flow structures were observed exclusively at various
cross-sectional locations (Figure 3). We used our wavelet-
decomposition algorithm (PIVlet 1.2) that performs wavelet
transforms on vorticity data (ω̃) and accurately resolved of
the Dean-, Lyne- and Wall-type vortices with size-structure
and strength considerations (Bulusu & Plesniak, 2013; Bu-
lusu et al., 2014; Bulusu & Plesniak, 2015; Plesniak & Bu-
lusu, 2016).

We examined the rate of change of circulation within
control regions encompassing the large-scale vortical struc-
tures associated with (D-L-W) secondary flow structures at
planar cross-sections. Figure 3 shows the out-of-plane vor-
ticity contours in various cross-sections and the paths traced
by particles in the vorticity field and are representative of
vortex lines. In fact, vortex lines cannot end within the flow
field unlike a few lines in Figure 3. This abberation can be
attributed to some complexities in computing and constrains
in EnSight software (v10.1.6). However, these traces are in
general parallel to the vorticity vector field and representa-
tive of vortex lines that undergo stretching and tilting up to
the 450− location as shown in Figure 3. The formation of
the D-type vortices, their persistence and decay are clearly
shown in Figure 3. The Wall-type vortices (W) are known
to “fork” from the D-type vortices between the 45o− and
90o-locations as discussed in a recent paper by Plesniak &
Bulusu (2016). For circulation budget analysis we treated a
collection of vortex lines as those seen in Figure 3 or mate-

rial curves around which circulation is computed. We used
the material derivative of the viscous, rate of change of cir-
culation in the streamwise (θ ) direction, ( DΓ

Dt = D
Dt

∮
C~u ·d~s)

and expressed it in the following equation where ν is the
kinematic viscosity of the blood-analog fluid:

DΓ

Dt
=−ν

∫∫
S
(~∇×~∇×~ω) · n̂dA (5)

In Equation 5 the left-hand-side, should equal the right-
hand side for conservative external forces. However, we
hypothesized that the equation may yield an inequality due
to phenomena such as vortex splitting in complex, pulsatile
arterial flows be subjected to complicated forcing. We re-
stricted our analysis to the 45o−,90o and 135o−planar,
cross-sectional locations in the three-dimensional flow field
assuming contiguity of the ensuing vortex tubes represent-
ing the large-scale, Dean-type vortices. In Figures 4B, C
and D, we show this inequality clearly during the time-
instances in the deceleration phase (marked in Figure 4A).
We observed that the rate of change of circulation and the
viscous dissipation do not balance during the late decelera-
tion phase. For example, during the late deceleration phase
at the 90o− and 135o−locations, there is change from D-
type to D-W-type system following the schematic represen-
tation presented in Figure 4A and the red and blue lines are
not coincidental.
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CONCLUSIONS
The 3C-3D MRV-experiments performed at Stanford

University led to the visualization of the full 3D-velocity
field in the curved artery model drawing on the benefit of
tracer-particle-free approach. Informed by the MRV-based
flow rate measurements the analytical pressure drop per unit
unit length in the entrance region is deduced. In the clas-
sic Womersley solution the flow rate is determined for a
known periodic pressure drop function, making our anal-
ysis the “inverse of the Womersley solution”. The entrance
region analysis showed that the in-plane vorticity vectors
may change direction depending on the instantaneous pul-
satile velocity profile. The circulation budget analysis in the
180o curved region is a potential indicator of vortex split-
ting since the presence of viscous disspative forces lead to
the splitting and decay of large-scale arterial secondary flow
structures.
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