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ABSTRACT
Free-stream turbulence (FST) gives, undoubtedly,

rise to the most complicated boundary-layer transition-to-
turbulence scenario. The reason for the complexity is that
the boundary layer thickness grows with the downstream
distance at the same time as the turbulence intensity (Tu)
of the FST decays and the FST characteristic length scales
grow. The FST is present everywhere in the free stream, but
changes characteristics with the downstream distance. This
implies that the actual forcing by the FST on the boundary
layer changes gradually, which makes it an intricate recep-
tivity problem. Today, we cannot honestly say that we are
capable to accurately predict the transition location subject
to FST in the simplest boundary layer flow, namely the one
developing over a flat plat under zero-pressure gradient con-
dition.

Based on a set of original experimental data, consist-
ing of 42 unique FST conditions, we here report on a semi-
empirical transition prediction model, which takes into ac-
count both the integral length scale and the turbulence ve-
locity fluctuation at the leading edge. We show that the
Tu, used in all existing models, is not the leading variable.
Instead, our data show that the necessary ingredients in a
successful transition prediction model includes, firstly, a
FST Reynolds number (Refst) as leading variable, secondly,
an FST parameter being the integral length scale Reynolds
number (ReΛ) which further accounts for the effect of dif-
ferent length scales and, thirdly, a scale-matching model be-
tween the FST and the boundary layer. However, the impor-
tance of Tu can still be realized, since it constitutes the quo-
tient of the two Reynolds numbers, namely Tu≡Refst/ReΛ,
even though Tu does not explicitly appear in the model.

INTRODUCTION
When a boundary layer flow undergoes laminar-to-

turbulence transition under the presence of free-stream tur-
bulence (FST) the transition scenario is different from the
condition with a low background disturbance level. Under
the latter condition, the initial phase of velocity disturbance
growth is characterized by small amplitude exponentially
growing Tollmien–Schlichting (TS) waves, while the for-
mer condition is characterized by algebraically growing un-
steady streamwise velocity streaks. The designation bypass
transition is still often used when referring to FST induced
boundary layer transition, although somewhat incorrectly.
The term bypass was coined by Morkovin (1969), and was

introduced to denote any transition process that bypassed
common knowledge, which at the time was limited to the
TS wave transition scenario (Tollmien, 1929; Schlichting,
1933; Schubauer & Skramstad, 1947). Originally it was re-
ferred to surface roughness induced transition but became a
common notation for FST induced transition.

The streamwise turbulence intensity, defined as the
ratio between the root-mean-square value of the velocity
(urms) and the free-stream velocity (U∞), i.e. Tu= urms/U∞,
is a simple measure to quantify the level of FST. As Tu is
increased there is a gradual shift from the TS to the FST
transitoin scenario. Arnal & Juillen (1978) noted that for
Tu> 1%, the FST transition scenario with unsteady stream-
wise streaks dominate the transition process over the TS
wave scenario. The early experimental studies on FST in-
duced transitoin originates from around 1940 (see e.g. Hall
& Hislop, 1938; Taylor, 1939; Hislop, 1940), but were all
carried out using pitot tube measurements and, hence, only
mean velocity profiles and transition locations could be re-
ported. Since then, a significant amount of work, both ex-
perimentally and numerically, has been performed dealing
with FST induced transition in boundary layer flows. For
reviews and progress on the subject the interested reader
is referred to e.g. Matsubara & Alfredsson (2001); Jacobs
& Durbin (2001); Saric et al. (2002); Brandt et al. (2004);
Fransson et al. (2005).

Effect of Integral Length Scale on Transition
Today, the FST transition scenario is fairly well under-

stood even though knowledge about the details on why and
how the FST characteristics can move the transition loca-
tion back and forth is still lacking. There exists a numer-
ous amount of empirical and semi-empirical relationships
between the location of transition onset and the Tu in a
flat plate boundary layer. However, already in the doctoral
thesis by Hislop (1940) an effect of different FST integral
length scales on the laminar-to-turbulence transition loca-
tion can be pointed out. The transitional Reynolds num-
ber for three different turbulence generating grids are tab-
ulated in the thesis of Hislop, and this data is here plotted
as a loglog plot in figure 1. Generally, the integral length
scale produced by a turbulence generating grid scales with
the mesh width of the grid, i.e. the larger the mesh width
the larger is the turbulence integral length scale (see e.g.
Kurian & Fransson, 2009). From figure 1, using the data
from 1940, one may conclude that Hislop was the first one
to report that an increase in integral length scale moves the
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Figure 1. Transitional Reynolds number versus turbulence
intensity for three different turbulence generating grids. Ex-
perimental data by Hislop (1940).

transition location farther downstream. The trend is mod-
est, but clearly notable with the added straight lines in the
loglog plot. More recent investigations have also shown that
the level of Tu is not the only dependent variable. An in-
crease in the FST integral length scale Λx has shown, both in
experiments and numerical simulations (Jonas et al., 2000;
Brandt et al., 2004; Ovchinnikov et al., 2004) to advance
the transition location. These results contradict the reported
results by Hislop since the opposite effect with respect to
the movement of the transition location with increasing Λx
is observed. However, the experimental results by Shahin-
far & Fransson (2013), reported in Shahinfar (2013), con-
firm the existence of both trends, which were observed in
the same measurement campaign. Shahinfar & Fransson
(2013) report on a critical turbulence intensity level around
Tucr = 3%. For Tu < Tucr the effect of increasing Λx con-
firm the results by Jonas et al. (2000); Brandt et al. (2004);
Ovchinnikov et al. (2004) and for Tu > Tucr the Λx effect
by Hislop (1940) is confirmed. The experiments reported in
Shahinfar (2013), show on the one hand that for Tu≈ 2.6%,
an increase of Λx of 12% advances the transition location
by 35%. On the other hand, for Tu ≈ 3.9%, an increase
of Λx of 18% the transition location moves downstream by
22%. A physical argument for this change of trend has so
far not been suggested. In addition, the results by Shahin-
far & Fransson (2013) question the common belief that the
FST length scales have a negligible effect on the transition
location even though the Tu level is of leading order.

For improved transition prediction models we need:
(1) to understand the physical mechanism governing the
transition scenario under FST and, (2) to have statistical
data, encompassing sufficient cases of different FST con-
ditions, to understand the choice of mother nature when
it comes to transition to turbulence. Once there, we can
cherry-pick the leading variables and boil the complex
physics down into a model capable of predicting the tran-
sition location with satisfaction. In the present paper a
new semi-empirical transition prediction model is proposed
based on the experimental results reported in Shahinfar &
Fransson (2013), which appears to account for the influence
of Λx on the transition location in an accurate way.

EXPERIMENTAL DATA
The data used here has been reported in Shahinfar &

Fransson (2013) in the doctoral thesis by Shahinfar (2013).
A thorough measurement campaign on the FST induced
boundary layer transition was carried out in the Minimum-
Turbulence-Level wind tunnel at KTH. The experimental
setup consisted of a flat plate, and the ceiling of the test sec-
tion was adjusted such that a zero-pressure gradient bound-
ary layer was developed over the plate. Various passive and
active turbulence generating grids were used in order to cre-
ate different FST conditions. The measurements were car-
ried out using two single hot-wire probes, sufficiently sepa-
rated from each other in the spanwise direction to not influ-
ence each other, and consists of 42 unique FST conditions
with thorough measurements throughout the transitional re-
gion. Unlike other extensive FST induced transition mea-
surements (e.g. Fransson et al., 2005) the free-stream ve-
locity was here kept constant for all cases, implying that the
boundary layer scale is locked up to transition onset. The
transition location is determined as the position where the
intermittency factor of the velocity signal is 0.5, that is half
way through the transition region. An intermittency factor
of 0 and 1 correspond to a completely laminar and a fully
turbulent flow. The intermittency was calculated using the
method proposed in Fransson et al. (2005).

TRANSITION PREDICTION MODEL
The transition location is defined as xtr and the cor-

responding boundary layer length scale and transitional
Reynolds number as

δtr =

√
xtrν

U∞

and Rex,tr =
U∞ xtr

ν
(1)

respectively, where ν denotes the kinematic viscosity. The
integral length scale of the FST is defined as

Λx =U∞

∫
∞

0
f (τ)dτ (2)

where f (τ) is the autocorrelation function of the velocity
time signal at the position of the leading edge of the flat
plate.

Next, we define the FST characteristics at the leading
edge of of the plate starting with the turbulence intensity
and integral length scale Reynolds numbers as

Tu =
urms

U∞

and ReΛ =
U∞ Λx

ν
(3)

respectively. We also define the FST Reynolds number as
the product of the two (in eq. 3)

Refst = Tu ·ReΛ ≡
urms Λx

ν
(4)

Primary Variable for Predicting Transition
The leading variable in the proposed transition predic-

tion model is Refst and not Tu as anticipated in all previous
models. In figure 2(a) and (b) Rex,tr is plotted versus both
variables and at first glance, the choice of Tu seems to be the
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Figure 2. Transitional Reynolds number versus turbulence
intensity in (a) and FST Reynolds number in (b). Experi-
mental data from Shahinfar & Fransson (2013).

better option, since it collects the data points closer to the
curve fitted line. However, plotting the data versus Refst re-
orders the set of data in a favorable way, such that a ∆Rex,tr
can be added to Rex,tr and account for the deviation from
the curve fit as well be shown.

Using the physical reasoning by Andersson et al.
(1999) one can argue that the curve in figure 2(a) should
have the form

(Rex,tr)
Tu
cf = A1 ·Tu−2 +A2 (5)

where A1 and A2 are constants. A2 has been added here,
with the motivation of an existing minimum Reynolds num-
ber for self-sustained turbulence. The same physical reason-
ing, based on input energy, as in Andersson et al. (1999),
can be used for the variable Refst and, hence, the curve in
figure 2(b) corresponds to

(Rex,tr)cf = B1 ·Re−2
fst +B2 (6)

where B1 and B2 are determined in a least-square-fit sense
to the data. Equation (6) turns out to be an important rela-
tion for the subsequent analysis.

Scale Matching Model
The existing experimental data indicates that there is

a change of trend of the influence of Λx on the transitional

Reynolds number. This information gives a hint about a
scale matching between the boundary layer scale and the
FST integral length scale. The local integral length scale,
which grows with the square root of the downstream dis-
tance, is directly proportional to the integral length scale
at the leading edge (see e.g. Kurian & Fransson, 2009),
namely Λx, which suggests that the ratio δtr/Λx is important
for the transition location. Here, the following hypothesis is
made:

For a given Tu there is an optimal scale ratio
(δtr/Λx)opt that promotes transition. The transitional
Reynolds number versus the scale ratio has a minimum
at the optimal scale ratio. A mismatch from the opti-
mal value will give a negative derivative of Rex,tr, with
respect to the scale ratio, if the scale ratio is lower
than the optimal, and a positive derivate if it is larger.

Equation for Transitional Reynolds Number
The effect of δtr/Λx on Rex,tr is assumed to enter as

a correction to eq. (6) and hence, we make the following
Ansatz:

Rex,tr = (Rex,tr)cf +∆Rex,tr (7)

where

∆Rex,tr = ∆Rex,tr(Λx/δtr) (8)

If the scale ratio is matched with the one corresponding to
the curve of eq. (6), ∆Rex,tr will give a zero contribution.
On the other hand, the farther the scale ratio deviates from
the one corresponding to the curve of eq. (6), the larger be-
comes the correction. In order to amplify the sensitivity of
the scale ratio we work with the square of this ratio, and
introduce the correction as

∆Rex,tr = κ

[(
Λx

δtr

)2
−
(

Λx

δtr

)2

cf

]
(9)

where (
Λx

δtr

)2
≡
(

Refst

Tu

)2 1
Rex,tr

(10)

and κ = κ(Refst) is a weighting function. In analogy with
eq. (10) we then introduce (Λx/δtr)

2
cf in eq. (9) as

(
Λx

δtr

)2

cf
=

(
Refst

Tu

)2 1
(Rex,tr)cf

(11)

Now, by combining eqs. (11), (10), (9) and (7), and multi-
plying with Rex,tr we arrive at the following 2nd order equa-
tion of Rex,tr,

Re2
x,tr +

[
κ Re2

Λ

1
(Rex,tr)cf

− (Rex,tr)cf

]
︸ ︷︷ ︸

= α

Rex,tr −

κ Re2
Λ︸ ︷︷ ︸

= β

= 0 (12)

3

6D-5



with the solution

Rex,tr =−
α

2
±
√(

α

2

)2
+β (13)

We note that both α and β depend on the parameter ReΛ and
the weighting function κ . While ReΛ is considered known
from the FST condition at the leading edge, κ requires fur-
ther analysis.

Weighting Function
The weighting function κ is introduced in eq. (9) and

corresponds to

κ =
∆Rex,tr[

(Λx/δtr)
2− (Λx/δtr)

2
cf

] (14)

which may be rewritten using eqs. (10), (11) and (4) to

κ =−Re−2
Λ

Rex,tr · (Rex,tr)cf < 0 (15)

This expression of κ needs to be modeled since it includes
Rex,tr and it renders a trivial solution to eq. (12). In addi-
tion, we may note that κ is always negative. For the model-
ing we plot κ versus Refst (i.e. eq. 15) in figure 3 using the
experimental data and eq. (6). The shape of a curve follow-
ing the data can be created in many different ways. In this
paper, we simply use a 6th order polynomial fit, which cor-
responds to the solid curve in figure 3. This model function
does a good job in the range of the data, but behaves phys-
ically incorrect outside the data range. The model function
should have two constraints for an accurate representation,
in the limits of Refst→ 0 and Refst→∞ the function should
approach zero. The reasoning behind this is that ∆Rex,tr
should approach zero in these two limits. For Refst → ∞

the transitional Reynolds number will approach the min-
imum Reynolds number for self-sustained turbulence (cf.
B1 in eq. 6) and the dependence of Λx will diminish. For
Refst→ 0 the FST transition scenario will eventually be re-
placed by the TS wave transition scenario and the effect of
Λx is expected to disappear. Worth pointing out is, however,
that independent of an accurate representation of κ the tran-
sition prediction model described by eq. (12) is only valid
for the transition scenario dominated by FST.

VALIDATION OF THE MODEL
Figure 4 shows a direct comparison of the transitional

Reynolds number as a function of the Reynolds number
based on the integral length scale and the turbulence inten-
sity (both taken at the leading edge of the flat plate). The
only input to our model, which is based on physical argu-
ments and results in a second order equation (i.e. eq. 12)
with analytical solution (see eq. 13), is ReΛ and Refst. This
parameter and variable, respectively, are directly related to
Tu via eq. (4). As shown in figure 4, the comparison be-
tween the experimental data in (a) with the predicted Rex,tr
in (b) is very good.

0 100 200 300 400 500 600
−6000

−5000

−4000

−3000

−2000

−1000

0

Re
fst

κ

Figure 3. Weighting function (κ) versus FST Reynolds
number. Here, the model function, shown as a solid line,
corresponds to a 6th order polynomial.

CONCLUSION
A new transition prediction model has been derived

based on a set of original experimental data from a zero-
pressure gradient flat plate boundary layer measurement
campaign. The semi-empirical model takes into account the
integral length scale and the turbulence velocity fluctuation
at the leading edge and is capable of predicting the transi-
tion location in an accurate way.

All existing models, so far, use Tu as the leading vari-
able, but the present analysis shows that the necessary ingre-
dients in a successful transition prediction model includes,
firstly, a FST Reynolds number as leading variable, sec-
ondly, an FST parameter being the integral length scale
Reynolds number which further accounts for the effect of
different length scales and, thirdly, a scale-matching model
between the FST and the boundary layer. Even though Tu
is related to Refst and ReΛ by definition (cf. eq. 4), a sim-
ilar analysis using Tu as primary variable will not predict
the transition location in a satisfactory way, which takes Λx
into account.

The validity of the model is expected to hold through-
out the FST parameter (ReΛ) and variable (Refst) ranges that
promote the FST dominated transition scenario. Following
the criterion by Arnal & Juillen (1978) of Tu& 1% for dom-
inating FST scenario, our derived eq. (12) should be valid
for Refst & 70 (using eqs. 5 and 6).

The developed model needs a better description of the
weighting function, which behaves physically correct in
the limits of Refst going to zero and infinity. Future work
will then address the effect of variable pressure gradient,
which would require additional measurement campaigns
under controlled wind tunnel settings.
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à la turbulence de l’écoulement general. Rapport Tech-
nique 1/5018 AYD. ONERA.

4

6D-5



Tu

R
e
Λ

Present data: Rex,tr

0.02 0.03 0.04 0.05 0.06

7000

8000

9000

1

2

3

4

5

6

7

x 10
5(a)

Tu

R
e
Λ

Predicted: Rex,tr

0.02 0.03 0.04 0.05 0.06

7000

8000

9000

1

2

3

4

5

6

7

x 10
5(b)
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and Tu (both taken at the leading edge of the flat plate). (a) Experimental data. (b) Predicted data based on FST data at the
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störungen bei der plattenströmung. Z. Angew. Math.
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