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ABSTRACT
The aim of this work is to study the effect of the variation in

canopy parameters on the Kelvin-Helmholtz-like instabilities trig-
gered over them. The appearance of these instabilities over fila-
ment canopies has been widely studied, but the present work seeks
to explore whether the instability can be manipulated by changing
canopy properties. To this effect, a parametric study using linear
stability analysis is conducted. For the analyses, the canopy is mod-
elled using two methods. The first models the canopy as a perme-
able substrate. The second accounts for the canopy through drag
forces acting on the flow within it. Some effects of canopy dynam-
ics, namely the average bending of the canopy elements and the dy-
namic clustering of the canopy are also individually studied. Using
the porous medium analogy it is shown for rigid canopies that the
onset of the instabilities is governed by the geometric mean of the

streamwise and wall-normal permeabilities
(√

K+
x K+

y
)
. The drag

model exhibits an additional feature missed by the porous model
i.e. an optimum value of drag coefficient at which the amplification
of the instability is maximum. It is also observed that the clustering
of filaments caused by the waving of the canopy can significantly
increase the amplification of the instability, and has a greater impact
than the mean filament bending.

INTRODUCTION
Existing studies regarding canopy flows, summarised in Finni-

gan (2000) and Nepf (2012), attribute the coherent waving seen in
canopies, termed ‘honami’ (Inoue, 1955), to a Kelvin-Helmholtz-
like instability originating at the canopy top as shown in the
schematic in Fig. 1. However, most of these studies focus on vege-
tation canopies. Consequently, the set of different canopy parame-
ters studied has been restricted. An extensive examination of these
parameters would find use in designing of canopy-based devices for
energy harvesting, heat exchange and flow control, where the opti-
mum layout could be very different to those found in nature. As
a preliminary step in this direction, to sweep over a large number
of canopy parameters we perform a linear stability analysis on the
turbulent mean flow overlying filament canopies. Such analysis has
been used by several authors (Raupach et al., 1996; Jiménez et al.,
2001; Py et al., 2006; White & Nepf, 2007; Ghisalberti & Nepf,
2009; Garcı́a-Mayoral & Jiménez, 2011; Dupont et al., 2010; Singh
et al., 2016; Zampogna et al., 2016; Luminari et al., 2016) to cap-
ture the spanwise-homogeneous Kelvin-Helmholtz-like instabilities
which are characteristic of these flows. The applicability of linear
stability analysis on a turbulent mean flow to predict strong convec-
tive instabilities, such as Kelvin-Helmholtz, has been demonstrated
by Beneddine et al. (2016). To facilitate the parametric study of
canopy layouts we model the flow within the canopy using two ap-
proaches. The first of these assumes the canopy to be analogous
to a permeable substrate with the streamwise permeability smaller
than the wall-normal one (Kx/Ky < 1). A similar analysis was car-
ried out by Abderrahaman-Elena & Garcia-Mayoral (2015), who
used Darcy’s equation as a model for the flow within the permeable
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Figure 1: Schematic of a Kelvin-Helmholtz-like instability
over a filament canopy. λ represents the wavelength of the
instability, δ is the shear layer thickness at the canopy top.

substrate. To account for macroscale diffusive effects within the
canopy, we also include the Brinkman term (Brinkman, 1949) in
the equations. This is similar to the homogenisation approach used
by Zampogna & Bottaro (2016) and Lacis & Bagheri (2017) to re-
solve the flow within the canopy. These studies also use Darcy’s
equations to model flow within the canopy. The use of Darcy’s
equations, which are first order, required them to use special inter-
face conditions to connect the flow in the channel to that within the
canopy (Ochoa-Tapia & Whitaker, 1995; Beavers & Joseph, 1967).
Zampogna et al. (2016) and Luminari et al. (2016) subsequently
performed stability analyses around the mean velocity profiles ob-
tained using this method and report good agreement between their
predictions of the most unstable wavelength and corresponding ex-
perimental observations. The second approach used in the present
study, which models the effect of canopies on the flow as a drag
force in the momentum equations is more conventional and has been
used by Singh et al. (2016), Ghisalberti & Nepf (2009) and White
& Nepf (2007) to study stiff canopies, and by Dupont et al. (2010)
and Py et al. (2006) for oscillating canopies. Py et al. (2006) were
the first to study the effect of canopy motion on instabilities using a
linear stability analysis on a piecewise linear velocity profile. They
coupled the filament motion to the flow around them using a fluc-
tuating drag term- K(u− dq/dt)2, where K is the drag coefficient,
u is the flow velocity and q is the deflection of the filament, there-
fore taking into consideration the effect of filament oscillation. This
study predicted the lock in of the flow instability with the frequency
of filament oscillation for certain filament properties. Dupont et al.
(2010) extended the analysis by performing an LES of the flow over
waving filaments using the same coupling, but did not find the lock
in effect to be significant for their case. However, these studies did
not account for another effect that the waving of filaments cause, i.e.
the clustering of filaments. Here we model this effect by letting the
drag coefficient vary with the change in canopy density due to the
waving. In addition, our models take into consideration the effect of
filament orientation and reconfiguration under a mean flow, as well
as the obstruction of the wall-normal velocity by the canopy.
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Figure 2: Schematic representation of the channel and stream-
wise velocity profile.

We consider symmetric channels as shown in Fig. 2, with a
constant half-height δ with different canopy parameters. For the
permeable substrate model, the parameters are the canopy height,
h f , and the streamwise and wall-normal permeabilities, Kx and Ky.
For the drag model, the parameters are h f and the drag coefficients,
Cx and Cy, which essentially play the same roles as K−1

x and K−1
y .

METHODOLOGY
Porous medium analogy

Within the canopy, the flow is assumed to be Stokesian and is
modelled using Brinkman’s equation

ν∇
2~u−νK−1~u−∇p = 0 (1)

where ν is the kinematic viscosity of the fluid, ~u is the velocity
vector and p is the pressure. The latter two terms of the equation
represent the volume average of Stokes flow between the densely
packed filaments. The first term captures the macroscopic diffusion
occurring at scales larger than that of the volume averaging. The
inverse permeability tensor K−1 depends on the local inclination of
the canopy with respect to the vertical θ

K−1 =

[
cos2 θ

K1
+ sin2

θ

K2
sinθ cosθ( 1

K2
− 1
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)
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− 1

K1
) sin2

θ

K1
+ cos2 θ

K2

]
(2)

where K1 and K2 are the permeabilities across and along filaments
respectively, as shown in Fig. 3. To study the effect of mean bend-
ing of the canopy, we assume that the filaments are rotated as can-
tilevers with a constant θ , and solve Eq. 1 analytically. K1 and K2
are assumed to scale with the square of the distance between the
filaments and are adjusted to account for the denser packing for non
zero bending angles. The solution gives an expression for the wall-
normal velocity at the interface between the canopy and the chan-
nel, which is used as a boundary condition for the overlying flow.
This boundary condition links the transpiration velocity across the
canopy/free flow interface with the pressure fluctuations above it,
and takes the form

v′ =−β p′ (3)

β = f (K1,K2,h f ,α) (4)

where α is the wavenumber of the perturbations.
Within the channel, we assume that the perturbations are in-

viscid and governed by Rayleigh’s equation. An order of magni-
tude analysis shows that viscous terms are negligible in the chan-
nel, even when they are dominant within the substrate. Gomez-de

Figure 3: Permeability tensor after rotation of reference
frame.

Segura et al. (2017) have performed a fully viscous analysis of the
system and found the effect of viscosity to be limited to damping in-
stabilities at small wavelengths, with no essential difference on the
mechanisms or their modulation by the properties of the canopy.
For the base velocity profile, an approximate turbulent profile is
used (Cess, 1958) between the canopy tips. This follows from the
assumption that the flow within the canopy is Stokesian and turbu-
lence does not penetrate into the canopy. The resulting eigenvalue
problem is solved using a Fourier spectral discretisation in x and a
Chebyshev one in y.

Drag model
In this model the canopy is represented as a viscous drag force

in the momentum equations. The assumption of a viscous drag can
be considered valid for closely packed or dense canopies, within
which the Reynolds number based on the local velocity and canopy
spacing would be relatively low. This assumption also implies that,
similar to the previous model, turbulence does not penetrate into the
canopy. The governing equation then can be written as

∂~u
∂ t

+~u∇~u =− 1
ρ

∇P+ν∇
2~u− 1

ρ
C~u (5)

where, C is the tensor of drag coefficients and is analogous to that
given for K−1 in Eq. 2. The drag coefficients C1 and C2 are assumed
constant inside the canopy. As the region including the canopy is
resolved as part of the domain in the stability analysis, we derive a
modified Rayleigh’s equation

[(Uα− iC22)(D2−α
2)−α(U ′′+C′12)

− (iC′11 +2αC12)D− i(C11−C22)D2]ṽ = σ(D2−α
2)ṽ (6)

where α is the streamwise wavelength of the perturbation, σ is the
temporal growth rate, Ci j are the elements of C, and D and the prime
superscript indicate differentiation with respect to y. C is only non-
zero within the canopy region.

For this case, a compact finite difference scheme is used to dis-
cretise the wall-normal direction, to avoid the excessive resolution
that a Chebyshev discretisation would produce within the canopy.
To obtain the base flow Eq. 5 is solved, assuming parallel flow, with
a Cess turbulent viscosity between canopy tips and and neglecting
advection within the canopy.

Model for dynamic clustering
The coherent bending of canopies also causes local clustering

of the filaments. To model this, we consider a tall, dense canopy
waving in response to flow over it. As the flow only penetrates into
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Figure 4: Clustering of canopy elements in response to the
overlying Kelvin-Helmholtz-like instability. The contours
show the perturbational streamlines obtained from the sta-
bility analysis, with shades of blue and yellow representing
clockwise and counterclockwise rollers respectively.

a small region of the canopy, only its top portion is dynamically
active. Even if the mean mean effect of canopy bending is small,
as we will see bending would also have the effect of concentrating
canopy tips in certain areas and vice versa. If we consider this ef-
fect while neglecting that of canopy inclination, we can model the
canopy as if its elements merely slid from side to side in response
to the velocity fluctuations. The displacement of the filaments is as-
sumed to be proportional to the fluid forces on them, and therefore is
modelled as proportional to the local velocity. Fig. 4 illustrates the
relationship between filament deflection and clustering. In regions
where the displacement increases along x, i.e. where consecutive
canopy elements are increasingly displaced, the canopy would be
sparser, and vice versa. If we linearise the dependence of the local
drag coefficient on the canopy density we obtain

Cx = C̄x

(
1−Cc

∂u
∂x

)
(7)

where u is the streamwise perturbational velocity, C̄x is the average
drag coefficient, and the constant Cc measures the sensitivity of Cx
to clustering.

RESULTS
In agreement with prior studies, both the permeability and drag

models reveal the formation of a Kelvin-Helmholtz-like instability
at the canopy-fluid interface. In the drag model, this instability is a
result of an inflected mean velocity profile, characteristic of canopy
flows (Raupach et al., 1996). In the porous substrate model, the
instability is elicited by relaxation of the impermeability condition
at the canopy-fluid interface (Jiménez et al., 2001; Garcı́a-Mayoral
& Jiménez, 2011; Abderrahaman-Elena & Garcia-Mayoral, 2015),
but both mechanisms are essentially the same.

Porous substrate model
The lengthscale of this instability is known to be set by the

shear at the interface. Here, the lengthscale is set by the shape of
the overlying turbulent mean velocity profile, which in turn scales
in friction units calculated by defining uτ at the canopy-fluid inter-
face. This friction unit scaling can be observed in Fig. 6. In the
case of stiff filaments, θ = 0, Kx = K1 and Ky = K2, for which the
solution of Brinkman’s equation splits into two distinct branches for

K1/K2 > 1 and K1/K2 < 1. Substrates lying in the former regime
may find use in turbulent skin friction reduction and are discussed in
Gomez-de Segura et al. (2017). In the case of interest for filament
canopies, K1/K2 < 1, a single characterising parameter is observed
to essentially govern the instability, as shown in Fig. 5:

κ
+
Br =

√
K1

+K2
+ tanh

(
h f

2yc

√
K1

K2

)
tanh2

(
h f√
K1

)
(8)

where κBr is the empirically derived equivalent permeability, y+c ≈ 8
represents the height above the canopy where the vorticity of the
base flow profile concentrates. This height has previously been
found to set the length scale for the instability (Garcı́a-Mayoral
& Jiménez, 2011; Abderrahaman-Elena & Garcia-Mayoral, 2015).
For deep canopies (h f >>

√
Kx), and in the limit where the in-

stabilities are fully developed, κBr > 5, the tanh terms are ≈ 1

and
√

K+
x K+

y is the dominant parameter driving the appearance
of Kelvin-Helmholtz-like instabilities. This parameter was also
obtained by Abderrahaman-Elena & Garcia-Mayoral (2015) using
Darcy’s equations to model the flow within the canopy. The similar-
ity can be attributed to the large wall-normal permeabilities charac-
teristic of canopies, which offer little resistance to flow penetrating
into the canopy. As a result, the variation in the wall-normal direc-
tion of the perturbational pressure is low and the flow is qualitatively
similar to that governed by Darcy’s law.

The effect of mean bending of the filaments in the analysis is
primarily reflected by the appearance of off-diagonal terms in the
permeability tensor (Eq. 2). These terms are negligible for small
filament bending angles, and it is shown in Fig. 7 that bending an-
gles even up to 30 degrees have little effect on the instability char-
acteristics. We will therefore neglect this effect in the following
sections. It can also be observed in Fig. 5 that the maximum am-
plification of the instabilities asymptotes for high permeability val-
ues. This is a result of the boundary condition (v′ = −β p′) used
to model the porous medium in the analysis. At very high perme-
abilities, (β → ∞) the pressure fluctuations tend to zero (p′ → 0).
Physically, this can viewed as the mirroring of the overlying base
velocity profile across the canopy interface. This resembles a free
shear flow, providing the Kelvin-Helmholtz limit (Jiménez et al.,
2001; Garcı́a-Mayoral & Jiménez, 2011). Once this limit is reached
the amplification becomes independent of the value of permeability
leading to the asymptotic regime.

Drag model
As in the previous model, the lengthscale of the instability is

set by the shear at the canopy/free flow interface. By defining the
friction velocity (uτ ) at this interface as the reference velocity, it is
observed that the most amplified instabilities scale in friction units.

Comparing the variation of the amplification curves for the two
models, as shown in Fig. 6, the high drag/low permeability region
shows good agreement. However, we find a qualitative difference
between the curves in the opposite limit of low drag/high permeabil-
ity. As discussed in the previous section, the permeable substrate
model exhibits an asymptotic limit of the amplification. In contrast,
the drag model exhibits an optimum drag coefficient, for which the
instability is most amplified. This optimum is the result of drag hav-
ing two competing effects. The first is the effect on the mean profile
- more drag implies more inflection in the profile, which enhances
the instability. The second is the effect on the fluctuations - more
drag implies smaller fluctuations and therefore weakens the insta-
bility. Both effects are balanced at the optimum value of the drag
coefficient. This competition of effects is missed by the permeable
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Figure 5: Variation in maximum amplification with (a) streamwise permeability and (b) equivalent permeability. Solid lines
represent h+f = 100, dashed lines- h+f = 10.
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Figure 6: Maximum amplification vs. streamwise permeabil-
ity/ inverse streamwise drag for varying Reτ . Solid lines -
porous substrate model, h+f = 10, Kx/Ky = 0.1; dashed lines
- drag model h+f = 18, Cy/Cx = 0.8 .

model, which does not require information on the shape of the base
flow within the canopy.

Wall-normal drag was found to damp the most amplified
modes, as can be observed in Fig. 8. This is due to the wall-
normal drag obstructing the penetration of the Kelvin-Helmholtz
like rollers into the canopy. The effect of mean canopy orientation
was also studied using the drag model and the results corroborate
those obtained with the permeable substrate model.

Dynamic clustering
The dynamic clustering of canopies has been modelled as the

approximate response of the canopy elements to a sinusoidal ve-
locity perturbation. Fig. 4 portrays the streamlines of the velocity
perturbations over the approximate canopy response to them. These
streamlines take the form of counter-rotating rollers, typical of the
Kelvin-Helmholtz-like instability. The figure shows that the posi-
tions of the clockwise rollers, coincides with the regions of low fil-
ament density and are therefore less damped by the canopy drag.
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Figure 7: Maximum amplification vs. streamwise permeabil-
ity for varying canopy bending angles. Solid lines repre-
sent h+f = 100, dashed lines h+f = 10. The anisotropy ratio,
K1/K2 = 10−1.

In turn, the counter-clockwise rollers coincide with regions of high
drag. On increasing the intensity of clustering, that is for higher Cc
in Eq. 7, this effect results in greater amplification of the instabil-
ity, as is shown in Fig. 9, even though the magnitude of perturba-
tional drag is locally increased. We examine only realisable values
of Cc, i.e. those that do not produce negative drag coefficients lo-
cally. It is also worth noting that the maximum amplitude obtained
in the limiting case of clustering, for which Cx locally reaches zero
value, matches the values obtained for a case with zero pertuba-
tional drag. This case would correspond with some canopy regions
being void of canopy elements. These preliminary results suggest
that the canopy dynamics, particularly the spacial clustering of the
canopy, can significantly affect the nature of the instability. How-
ever, this simplified model does not account for canopy inertia, and
as a result, the canopy displacement is in phase with u. In a real
canopy, it is possible that this phase relationship may vary accord-
ing to the mechanical properties of the filaments.
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Figure 8: Variation of maximum amplification with the
streamwise drag coefficient for varying filament heights.
Solid lines show results for analysis with streamwise and
wall-normal drag, dashed lines - streamwise drag only.
Cy/Cx = 0.8, h+f increases from blue to red.
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Figure 9: Change in maximum amplification for varying clus-
tering intensities. Dashed lines shows limit obtained for anal-
ysis with no drag damping the perturbations.

CONCLUSIONS
The present study aims to relate the Kelvin-Helmholtz-like in-

stabilities over filament canopies to the physical parameters of the
canopy. Using a porous medium analogy, it is shown that the
instability over dense canopies can be characterised using a sin-

gle parameter κBr ≈
√

K+
x K+

y (Eq. 8). In designing synthetic
canopies, this parameter can be used as a predictive metric to as-
certain whether the instabilities triggered lie in the high amplifica-
tion region or not. On comparing the results obtained using the two
models we find that the drag model provides a more realistic repre-
sentation of the low drag/high permeability regime. It also provides
an optimum drag coefficient at which the most amplified instabili-
ties are obtained. The models also show that the mean bending of
the canopies does not affect the instability significantly, at least up
to 30 degrees. However, the clustering of filaments due to dynamic
bending is found to increase the amplification significantly due to
positive feedback between the fluctuations in the streamwise veloc-
ity and in the drag coefficient.
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