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ABSTRACT
An analysis of turbulent suction boundary layers is carried out

on the basis of new experimental data. The streamwise extent of the
suction region of the present experimental apparatus is significantly
longer than previous studies, allowing us to better investigate the
development of boundary layers with wall suction. We show that
it is possible to experimentally realize a turbulent asymptotic state
where the boundary layer becomes independent of the streamwise
direction and of the initial condition, so that the suction rate con-
stitutes the only control parameter. Turbulent asymptotic suction
boundary layers appear to be characterized by a mean velocity with
a long logarithmic region, with a slope independent of the suction
rate if outer scaling is adopted. In addition to the mean-velocity
scaling of turbulent asymptotic suction boundary layers, the suction
rate threshold for self-sustained turbulence is also investigated.

INTRODUCTION
Wall-normal suction and blowing is a rather simple but effec-

tive technique to modify the behavior of a boundary layer. In partic-
ular, the application of uniform suction at the wall can lead to a state
for which the momentum loss due to wall-friction is exactly com-
pensated by the entrainment of fluid due to the suction, hence the
boundary layer thickness remains constant in the streamwise direc-
tion. This condition is known as the Asymptotic Suction Boundary
Layer (ASBL). For a laminar ASBL an analytical solution of the
Navier-Stokes equations can readily be derived, resulting in an ex-
ponential velocity profile as first obtained by Griffith & Meredith
(1936) and experimentally verified by Kay (1948) and Fransson &
Alfredsson (2003). Despite the numerous experimental and numer-
ical investigations, there is no general agreement on the description
of the turbulent asymptotic suction boundary layer (TASBL): con-
tradictory results can be found in the literature regarding the evolu-
tion toward the asymptotic state, the threshold suction rate for self-
sustained turbulence and the scaling of the mean velocity profile.

The very existence of an asymptotic state for any value of the
suction ratio Γ =−V0/U∞ (where V0 < 0 is the suction velocity and
U∞ is the free stream velocity) has been questioned: Dutton (1958)
concluded, based on experimental results, that there is just one suc-
tion rate for which an asymptotic state can be obtained, while the
experiments by Tennekes (1965) suggested that no asymptotic state
can be observed for suction rates lower than a certain threshold. In

a recent large-eddy-simulations study by Bobke et al. (2016) it was
concluded that it is impossible to obtain a turbulent asymptotic state
in a practically realizable facility, due to the very long streamwise
suction length required. It should be noticed, however, that the ini-
tial condition of the simulations was the laminar ASBL, while the
common approach in the experimental studies is to start the suction
downstream of an initial impermeable entry length where a turbu-
lent boundary layer has been allowed to grow. Even in this case
the evolution toward the asymptotic state appears to be slow, never-
theless the approach to the asymptotic state can be hastened if the
boundary layer thickness at the beginning of the suction is chosen
to be close to the asymptotic one (Dutton, 1958; Black & Sarnecki,
1958; Tennekes, 1964).

Already in the first studies on turbulent suction boundary layers
it was noted that an initially turbulent boundary layer would relam-
inarize if the suction rate is large enough, and the laminar ASBL
would eventually be reached. Dutton (1958) and Tennekes (1965)
suggested a critical suction rate above which a turbulent state could
not be maintained of Γcrit ≈ 0.1. In recent numerical simulations
Khapko et al. (2016) obtained the much lower threshold value of
Γcrit = 0.0037.

Different scalings of the mean velocity profile have been pro-
posed for the turbulent boundary layer with suction. As any other
turbulent boundary layer flow, the turbulent suction boundary layer
can be divided in a viscous sublayer where the viscous stresses are
prevalent and a turbulent layer where the Reynolds stresses dom-
inate. The asymptotic description of the viscous sublayer can be
derived as:

U+ =
1

V+
0

(
ey+V+

0 −1
)

(1)

where the superscript “+” indicates normalization in viscous units.
For the turbulent layer, instead, two different scalings have been
proposed. A bi-logarithmic law where the streamwise velocity is
proportional to the squared logarithm of the wall-normal coordinate
has been derived from Prandtl’s momentum transfer theory by a
number of authors (Black & Sarnecki, 1958; Clarke et al., 1955;
Mickley & Davis, 1957; Simpson, 1970; Stevenson, 1963) and more
recently via analytical methods (Vigdorovich & Oberlack, 2008).
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The bi-logarithmic law can be expressed in the form (Stevenson,
1963)

2
V+

0

(√
1+U+V+

0 −1
)
=

1
κ

lny++B (2)

where the L.H.S. is sometimes referred to as pseudo-velocity. There
is no consensus on the numerical values of the parameters κ and B,
which in general should be considered function of the suction ve-
locity. Nevertheless, a common choice among the supporters of the
bi-logarithmic scaling is to set κ to the value of the non-transpired
case.

Other authors (Dutton, 1958; Tennekes, 1965; Andersen et al.,
1972; Bobke et al., 2016) have instead proposed a logarithmic de-
pendency of the streamwise velocity on the wall-normal coordinate,
analogously to what is found for non-transpired boundary layers

U+ = A lny++B (3)

with the slope A and the intercept B of the line dependent on the
suction level. Among these, particularly original is the approach by
Tennekes (1965), who derived a law of the wall and a velocity defect
law for turbulent suction boundary layers in the modified set of vari-
ables V+

0 U+ = f (y+V+
0 ) and V+

0
(
U+−U+

∞

)
= G(y/δ ). Tennekes

concluded that in the range 0.04 <−V+
0 < 0.1, the logarithmic part

of the profile shows the constant slope

−V+
0 U+

∝ 0.06 ln
(
−y+V+

0
)

(4)

For turbulent asymptotic boundary layers, though, −V+
0 U+ =

U/U∞, hence eq. (4) can be rewritten in outer scaling as

U/U∞ ∝ 0.06 lnη (5)

where η is the nondimensional outer wall-normal distance.
In order to settle the controversy on the mean velocity scaling

and to explore the scaling of the higher order statistics, for which the
available experimental data is rather scanty, a larger database on tur-
bulent suction boundary layer is required. A new experimental ap-
paratus for wall-transpired boundary layers has recently been built
and brought into operation at the MTL wind-tunnel at the Odqvist
Laboratory of KTH, Stockholm. In this paper we will report the
new findings, with main focus on the mean velocity profiles.

EXPERIMENTAL SETUP AND DATA REDUCTION
The experimental setup consists in a 6.62 m long and 1.2 m

wide flat-plate, with a top surface made of titanium sheets with
64 µm laser-drilled holes with centre-to-centre distance of 0.75 mm.
The flat plate starts with a 122 mm long impermeable elliptical lead-
ing edge followed by 8 individual plate elements, each of them
equipped with 18 suction hoses arranged such that the suction uni-
formity is ensured. Each set of 18 hoses is connected to a manifold,
and a pipe is driven from each of the 8 manifold to a suction cham-
ber. The chamber is then connected to a fan with a pipe equipped
with a flowmeter measuring the total volume flowrate withdrawn
through the surface of the plate. The plate is installed in the test
section such that the test surface constitutes the wind-tunnel bot-
tom floor. A bleed slot between the wind-tunnel contraction and
the plate leading edge allows the development of a fresh bound-
ary layer with a definite origin. Adjustment of the bleed-slot open-
ing and of the ceiling allowed to maintain zero pressure gradient
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Figure 1. Intermittency γ of the near-wall velocity signal vs. the
suction rate Γ for different suction start locations Rexs and stream-
wise evolution lengths ∆x/δs. Black solid line: Γcrit = 3.70×10−3

(Khapko et al., 2016); Black dashed line: ±4% deviation on Γcrit.

condition, with a max-min variation of U∞ < ±0.8% in the whole
measurement domain for every suction rate considered. A series
of V-shaped embossing tapes glued on the leading-edge section act
as tripping device, and a turbulent boundary layer grows on a im-
permeable surface for a certain downstream distance. After this
initial length, uniform wall suction is applied along the surface in
the downstream direction on the whole spanwise width of the plate.
The streamwise component of velocity has been measured with sin-
gle hot-wire probes with an expected accuracy of ±1%. The vari-
ation of suction velocity between different plates is less than 2%
around the mean value, ensured measuring the pressure drop across
the sheets in combination with a permeability measurement. The
expected accuracy on the suction rate is ±4%. For all the suction
profiles shown in this proceeding the friction velocity uτ has been
obtained from Von-Kármán momentum integral equation modified
for mass-transfer

(
uτ

U∞

)2
=

C f

2
=

dθ

dx
− V0

U∞

(6)

where dθ/dx was obtained from a fit of the measured momentum
thicknesses to an exponential law of the type Reθ = aReb

x . Since
for the reported profiles the first term of the R.H.S. of eq. (6) is at
least one order of magnitude smaller than the second term, C f has
the same uncertainty as the suction rate.

In the following, the subscript “s” indicates the quantities at
the streamwise location of the suction start, while the subscript “as”
indicates the asymptotic conditions. The boundary-layer thickness
δ is defined as δ99, i.e. the wall normal location where the velocity
reaches 99% of U∞.
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Figure 2. Influence of the boundary-layer thickness at the suction start location on the evolution of the boundary-layer momentum-thickness
Reynolds number Reθ and shape factor H12. Dashed line: Reθ = f (Rex) as in Nagib et al. (2007)
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Figure 3. Inner-scaled mean velocity profiles for the four most downstream measurement locations for asymptotic cases in Fig. 2. ∆x repre-
sents the streamwise distance between the most upstream and the most downstream boundary-layer profile shown in each graph. Dashed line: 
Viscous sublayer as in eq. (1)
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RESULTS AND DISCUSSION

Self-Sustained turbulence suction rate threshold
As a first step in this analysis, the threshold suction rate for

self-sustained turbulence is considered. While this value is interest-
ing per se, its knowledge is also important in order to avoid to in-
clude undesired data in the analysis of the scaling of turbulent suc-
tion boundary-layers, since profiles which are relaminarizing can
bring misleading information.

Suction is applied on an initially turbulent boundary layer,
starting at the streamwise Reynolds number Rex. After the down-
stream distance ∆x, the time series of the velocity is measured in the
inner layer of the boundary layer (9 / y+ / 15) for different values
of the suction rate Γ. The intermittency of the velocity signal is then
calculated with the method proposed in Fransson et al. (2005) to
understand if the boundary layer is fully turbulent (γ = 1), laminar
(γ = 0) or if a relaminarization process is ongoing (0 < γ < 1). The
results are shown in Figure 1. If we define Γcrit = max(Γ) : γ = 1,
i.e. as the maximum value of suction ratio for which a fully tur-
bulent velocity is observed at the measurement location, we notice
that for all the initial conditions and evolution length considered
Γcrit = 3.70×10−3 ±4%, in agreement with Khapko et al. (2016).
It is interesting to notice that all of the boundary-layer reported as
turbulent in Dutton (1958), 8 out of 10 of those in Black & Sar-
necki (1958) and 7 out of 14 in Tennekes (1964), for instance, were
obtained with Γ > Γcrit, thus were probably undergoing relaminar-
ization. It should be kept in mind, however, that in the aforemen-
tioned experiments, Pitot tubes were used as measurement devices,
therefore the fluctuating velocity component was unaccessible and
the traces of a relaminarization process hard to recognize. The au-
thors opinion is that boundary layers with Γ ' 3.7× 10−3 must be
excluded from all future analysis on the scaling of turbulent suction
boundary layers.

The evolution towards the asymptotic state
Figure 2 shows the evolution of the momentum-thickness

Reynolds number Reθ along the streamwise-coordinate Reynolds
number Rex for different suction rates and different boundary layer
thickness Reθs. The variation of Reθs was obtained both by regulat-
ing the free-stream velocity and by changing the physical location
where the suction started. The latter regulation was achieved ei-
ther by disconnecting the upstream plate elements from the suction
system or, when finer adjustment was needed, by covering part of
the surface with standard household aluminum foil. For all the suc-
tion rates shown in Figure 2, it was possible to experimentally re-
alize a boundary layer with approximately constant boundary layer
thickness, moreover the same boundary layer momentum thickness
could be obtained with two different Reθs. This indicates that the
turbulent asymptotic suction regime was indeed reached in a strict
manner. The boundary layer profiles measured at the four most
downstream measurement locations for the cases considered to be
asymptotic states are shown in Figure 3. For each of the cases con-
sidered the variation of momentum thickness is less than ±3.5%
in the last four measurement locations, corresponding to a stream-
wise distance ∆x exceeding 36 times the boundary layer thickness
δ . It can be observed that the variation of the mean velocity pro-
file is minimal, supporting the conclusion that the selected profiles
represents asymptotic states.

A mean velocity scaling for the asymptotic state
Figure 4 shows the inner-scaled mean velocity profile for the

most downstream location of the asymptotic states in Figure 3. The
profiles are characterized by a long region where the mean velocity
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Figure 4. Inner-scaled asymptotic profiles at the most downstream
measurement location. Symbols as in Fig. 2. Dashed line: Viscous
sublayer as in eq. (1)

profile exhibit a logarithmic behaviour, and from the absence of a
clearly distinguishable wake region. The disappearance of the wake
region appear to be a characteristics of the TASBL, and the pres-
ence of a wake region can be considered a symptom that the bound-
ary layer has still not reached its asymptotic state (Simpson, 1970;
Bobke et al., 2016). These data support the view according to which
the mean velocity profile can be described by a log-law as in eq. (3),
with A = f1 (Γ) and B = f2 (Γ). However, if the profiles are instead
plotted in outer scaling, as shown in Figure 5, a good overlap in the
logarithmic region between all the asymptotic profiles considered
can be observed, independently from the suction rate. In Figure 5
three different choices of outer length scale are shown (with ∆ rep-
resenting the Rotta-Clauser length scale). No significant difference
can be noticed, even if slightly better collapse can be observed when
η = y/∆. Figure 6 depicts the log-law indicator function based on
the outer scaled velocity Ξ = yd(U/U∞)/dy, where the derivative
was calculated through a cubic spline interpolant of the measured
mean velocity profile. A clear plateau of Ξ extending more than a
decade of y+ is observed between y+ > 100 and y/δ < 0.6, with
mean value Ξ = 0.0656. We propose here that the mean velocity
profile of the turbulent asymptotic suction boundary layer can be
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described by the equation

U
U∞

= A lnη +B (7)

with A = 0.0656 and the value of B, which depends on the
choice of outer length scale, equal to B = 0.811, 0.993, 1.01 for
η = y/θ , y/δ , y/∆ respectively. The proposed scaling is in close
agreement with the one proposed by Tennekes (1965) (see eq. 5).

Comparison with other experiments and simulation
The asymptotic profiles measured in the current experiment are

compared with previous numerical and experimental results in Fig-
ure 7. The asymptotic profiles obtained numerically by Khapko
et al. (2016) and Bobke et al. (2016) show outer-scaling similarity
for all the suction rates considered, excluding the case representing
the reported self-sustain turbulence threshold (Γ = 3.70 × 10−3).
The slope of the log-law coefficient observed in the simulations
with Γ < 3.70 is however slightly smaller (A ≈ 0.061) than the
one observed in the current experiments. Good agreement on the
slope of the logarithmic region is found with the profile measured
by Kay (1948) at the suction rate for which he reported that a con-
stant boundary layer thickness was achieved. The profile from Ten-
nekes (1964) deviates considerably from the one measured in the
current experiments. This profile, however, represents a case where
the boundary-layer momentum thickness was still weakly growing,
hence the asymptotic regime was not fully established. As a com-
parison, in Figure 8 two non-asymptotic states at Γ ≈ 2.83× 10−3

are shown together with the asymptotic state at the same suction rate
in inner and outer scaling. In the two non asymptotic cases the pres-
ence of a small but distinguishable wake region, determine an early
departure of the mean velocity profile from the log-law, compro-
mising the validity of the proposed mean velocity profile scaling.
In particular, if suction is applied too early (Reθs << Reθas), the
wake region appears as an overshoot above the log-law, similarly to
the effect of insufficient box-size in the simulations by Bobke et al.
(2016). If suction is applied too late (Reθs >> Reθas), the departure
from the log-law takes the form of an undershoot. These deviations
are probably linked to not fully developed outer structures in the
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Figure 7. Comparison between present experiments and other ex-
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Figure 8. Inner- (a) and outer- (b) scaled mean velocity profiles for
the most downstream location of three cases with Γ ≈ 2.83×10−3.
Symbols as in Fig. 2c. Gray dashed line: log-law as in eq. (7).

case of Reθs << Reθas or to an excess of low-wavenumber turbu-
lent energy in the case of Reθs >>Reθas (Coles, 1971; Bobke et al.,
2016).

CONCLUSIONS
New experimental results on turbulent suction boundary layer

convincingly show that it is possible to experimentally produce a
turbulent asymptotic state, provided that the boundary layer thick-
ness at the streamwise location where suction is started is close to
the asymptotic one. The largest suction rate for which self-sustained
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turbulence is observed is Γ≈ 3.7×10−3, in agreement with Khapko
et al. (2016). The mean velocity profile of the asymptotic profile is
characterized by a long logarithmic region with a slope that appears
to be constant in outer variables with a value equal to A = 0.0656
independently of the suction rate. To confirm this behavior, data
on asymptotic profiles at lower suction rates would be welcomed.
However, the larger Reθas expected when Γ is lowered, represents
a considerable challenge. From an experimental perspective, low-
ering Γ would require experiments in which a turbulent boundary
layer is allowed to grow for a long downstream distance before suc-
tion is applied, in order to have Reθs ≈ Reθas. Downstream of this
location a suction region must be provided, which extends multiple
times the (larger) boundary layer thickness. The size of the required
facility would hence quickly become limiting. From the numerical
perspective, instead, the limiting factor would be the large Reτ en-
countered when Γ is lowered (Bobke et al., 2016).
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